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Abstract
We describe a number of techniques for the analysis of solid-state nanopore ionic current traces
and introduce a new package of Matlab analysis scripts with GUI front ends. We discuss
methods for the detection of the local baseline and propose a new detection algorithm that
bypasses some of the classical weaknesses of moving-average detection. Our new approach
removes detected events and re-creates an ideal event-free baseline subsequently used to
recalculate the local baseline. Iterative operation of this algorithm causes both the moving
average of the baseline current and its standard deviation to converge to their correct values. We
explain different approaches to selecting events and building event populations, and we show the
value of keeping track of the changes in parameters, such as the event rate and the pore
resistance, throughout the course of the experiment. Finally, we introduce a new technique for
separating unfolded events and detecting current spikes present within translocation events. This
open source software package is available online at: http://ceesdekkerlab.tudelft.nl/downloads/
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(Some figures may appear in colour only in the online journal)

1. Introduction

Over the past decade, there has been tremendous growth and
progress in research on solid-state nanopores [3, 15]. In this
technique, a membrane containing a nanometer-scale pore is
placed in between two chambers containing an electrolyte
solution, as shown in figure 1(a). An electric field is applied
across the membrane and charged molecules, such as DNA,
present in the solution experience as an electrophoretic force
pulling them towards the pore and causing them to translocate
through. As a molecule translocates through the nanopore, it
temporarily blocks the current, which causes a temporary
resistive pulse, as shown in figure 1(b). Typically, the dura-
tion of the pulse contains information about the length of the
molecule while its amplitude is dependent on the molecule’s
cross-sectional volume.

With the steep development of this field has come the
need for signal-processing tools specifically suited to this
niche. While many different techniques exist for the analysis
of nanopore current traces, the majority of data analysis is
done on custom software that differs from lab to lab, although

some different approaches have recently been published
[1, 6, 10]. Arjmandi et al [1] have discussed the advantages of
wavelets over low-pass filtering, particularly in the accurate
recovery of the dwell time and amplitude of translocation
events. Raillon et al [10] have proposed a new level-fitting
algorithm based on the cumulative-sums algorithm. Pedone
et al [6] focused on the accurate analysis of short pulses,
which is a common issue in experiments aimed at detecting
proteins and short DNA.

In this paper, we describe the many aspects of nanopore
data analysis as combined in one single, comprehensive new
Matlab GUI-based package named Transalyzer. We also
introduce novel approaches for detecting the local baseline,
extracting current peaks present within events, and we describe
various analysis strategies for specific scenarios. Our analysis
procedure is split into three successive stages, with each stage
utilizing parameters determined in the previous stage, as shown
in figure 1(c). The first stage (GUI_detect) determines the local
baseline and rms noise level (σ), detects each translocation
event, and determines its basic properties such as duration,
current blockade level, and integrated area [event charge deficit
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(ECD)]. In the second stage (GUI_events), mixed event popu-
lations are sorted and population level statistics are generated,
such as the most probable dwell time, blockade level, and event
rate. The third and final stage (GUI_localstructures) reanalyzes
each event in a given population for the presence of local
structures such as bound protein or knots. This analysis pipeline
allows us to address the large variability encountered in dif-
ferent types of experiments.

2. Event detection and characterization

The analysis procedure begins with the detection of transloca-
tion events within a noisy baseline. As with most other labs, we
use a thresholding algorithm to extract events. In this approach,

events are identified if they cross a threshold (typically 5σ)
away from the local baseline level. The threshold is defined by
multiplying a peak detection factor and the rms noise level (σ),
as shown in figure 2. The peak detection factor is chosen large
enough to minimize the number of noise spikes captured, while
simultaneously low enough to capture as many translocation
events as possible. Successful detection of translocation events
requires proper identification of the local value of the baseline
and the noise level (σ). A variety of factors complicate the
determination of these two values, including (1) inherently
unstable baselines, (2) very large event rates, (3) pore clogging,
and (4) successive closely-spaced events. Here, we describe
how we have addressed some of these issues in our analysis
software, which has been used to analyze a large variety of
experimental data.

Figure 1. (a) Illustration of a typical nanopore setup. (b) Current signal produced by a translocating DNA molecule. (c) Schematic of the
typical analysis procedure of a nanopore current trace, which is divided into three parts. The first part splits a current file, detects the events in
each segment, characterizes each event, and concatenates all found events. The second part sorts and characterizes the event populations. The
final part can be used to sort and reanalyze events for the presence of local structures and to generate relevant statistics.
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2.1. Baseline detection

Traditionally, baseline detection is performed by calculating a
moving average, with the window size optimized to the
maximum period of time over which the baseline value is
allowed to fluctuate by some chosen amount. Issues affecting
proper baseline detection can be distinguished based on the
baseline’s stability. In the case of a stable baseline, the size of
the window can be kept quite large (say, 30 000 points at
500 000 samples/s), which can provide an accurate value in
most cases. In cases where the baseline is unstable, however,
the window size must be kept small (<6000 points) in order to
track the baseline fluctuations. In both of these cases, parti-
cularly the latter, the moving average can become an inac-
curate representation of the local baseline because previous
events have influenced the value of the local baseline. This
effect is especially noticeable if the event rate is very high,
leading to many closely spaced events, or if the event dura-
tions are a significant fraction of the window size. We
introduce a simple algorithm to deal with all these issues in
section 2.3.

2.2. Noise level determination

A number of techniques exist for determining the noise level.
In the case of a stable baseline, with short-duration events at a
low event rate, the trace file can be split into small segments
and the global standard deviation (STD) can be used. A more
accurate method, which works well with high-event-rate data
sets, is to first determine the STD in a small moving window
(typically 1000 points in size). The values of the STD for all
of the windows in a trace segment can be put into a histogram
where the bin width is defined by the precision required. The
center of the main peak in the resulting histogram typically
provides an accurate value of the STD within the trace.

2.3. Iterative detection algorithm

In order to overcome the limitations of the thresholding
approach, we designed and implemented a new algorithm,
shown in figure 3(a). This approach involves iterating through
the thresholding algorithm multiple times in order to decouple
the moving average calculation of the local baseline from the
influence of previous events. At the end of each iteration, a
new current trace is generated, where the duration of each

Figure 2. A typical threshold detection scheme involves finding the
local baseline and rms noise level (σ). A detection threshold is set as
a constant (PDF; peak detection factor) multiplied by the rms noise
level, away from the local baseline. Events are detected by finding
points where the current trace crosses the detection level. The trace
can be analyzed backward from the first crossing point and forward
from the next crossing point to find the points where the current
crosses the local baseline, which define the start and stop of the
event.

Figure 3. (a) Flowchart of the iterative detection algorithm. After
each iteration, information about the events found feeds back into the
next iteration to improve the value of the local baseline and rms
noise level. (b) A simulation of three closely spaced translocation
events, with the local baseline determined using three different
techniques. Moving averages of 20 000 and 5000 points, represented
by the dashed green and red lines, fail to properly determine the local
baseline of the second and third events because the moving average
is influenced by the previous events. The solid magenta line shows
the same 5000-point moving average after two iterations of the
detection algorithm, demonstrating that it is able to accurately
determine the value of the local baseline despite using a small
window size.
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detected event is replaced by the value of the local baseline at
the start of the event. An assumption is thus made that the
baseline value does not change significantly (>σ) over an
average event’s translocation time, which holds true in the
majority of the experimental data we have encountered. This
new trace is subsequently used to recalculate the moving
average (using the same approach described in section 2.1)
and the rms noise level, and to detect the events again. In
figure 3(b), we compare the value of the local baseline for a
20 000 moving average, a 5000 moving average, and a 5000
moving average with two iterations of the algorithm. In this
simulation, three events are placed close together. Using the
small, 5000-point moving average causes a very inaccurate
value of the local baseline for the second and third events.
Increasing the window size to 20 000 points improves the
accuracy but fails to completely eliminate this effect. The
proposed algorithm quickly converges to the correct value
with each iteration, while allowing small window sizes to be
used, as shown by the 5000-point, two-iteration trace. Simi-
larly, for the calculation of the STD, a second trace is created
after each iteration where the events are removed, and this is
subsequently used to determine the new value of the STD.
The iterative algorithm is capable of handling event rates
where the average time between events is twice as small as
the size of the moving window used. So a 5000-point win-
dow, corresponding to 10 ms at 500 000 samples/s, can be
used on data with event rates of 200 Hz, as long as the
average translocation time of the events is several times
smaller than the size of the moving window. Much higher
event rates must be addressed on a case-by-case basis,
although these situations are typically avoided because they
can lead to multiple molecules within the pore simulta-
neously, which can significantly complicate analysis. In the
future, several alternative implementations of the iterative
algorithm could be used to handle more unstable baselines, at
the cost of increased computational time. This could include
using both the forward and backward moving averages to
determine starting and ending points for the event, and
interpolating the change in the baseline that occurred over the
course of the event.

How does the iterative algorithm perform when analyz-
ing experimental data? We can quantify the improvement in
the value determined for the local baseline by introducing a
new measure 〈IΔB〉. This is calculated by first finding the
mean value of the 50 points preceding the start of this event
and subsequently determining the difference between this
mean and the value of the local baseline (from the moving
average) for each particular event. We take the absolute value
of this difference and determine the mean (〈IΔB〉) and STD of
the resulting distribution. If the value of the baseline
improves, we expect the value of 〈IΔB〉 to reduce and the
spread of its distribution to become narrower. We applied this
approach to several DNA and protein experimental datasets
and reanalyzed each dataset using 0, 1, or 2 iterations of the
algorithm, with the results shown in table 1. We observed
reductions in 〈IΔB〉 and the STD after one iteration in all
cases, with further iterations bringing minimal improvements.
The larger improvements observed in DNA experiments can

be attributed to the longer duration of these events compared
to those of proteins, which leads to larger changes in the
moving average. Although the changes may appear small,
these values are averaged over thousands of events. This
simple algorithm can thus improve the results of the analysis
and overcome the issues associated with thresholding
detection.

2.4. Event characterization

Proper determination of each event’s characteristics (duration,
blockade, and ECD) can be complicated by many types of
physical phenomena and data-handling effects, depending on
the type of experiment, including short events prone to fil-
tering distortions [6], low SNR, long tail events, folding
[8, 14], events where the current increases rather than
decreases during translocation [13], hybrid events where the
current both decreases and increases [5], events where the
molecule docks onto the pore before translocation
[2, 7, 12, 16], knotting [11], mixed populations, pore growth
over time [4], biomolecule-pore interactions [9], protein–
DNA interactions, and the presence of short DNA fragments.
For the event duration, using the full-width, half-maximum
(FWHM) value (in conjunction with a Gaussian low-pass
filter), provides the most accurate translocation time value,
even in light of various distortions introduced by filtering
[1, 6]. The blockade level for very short duration events (short
DNA or proteins) is best represented by the maximum
blockade value. For longer events, dividing the ECD by the
FWHM time provides the best representation of the blockade
level for many different types of events. For blockades with
well-defined levels such as large folds [8], level-fitting soft-
ware such as OpenNanopore [10] can be used. We have
added an export function into Transalyzer capable of
exporting event databases into OpenNanopore, effectively
acting as an event pre-processor. Our software allows the user
to select between multiple analysis techniques to determine
the translocation time and blockade level of each population,
since multiple populations can coexist within the same
experiment.

Due to the many different types of event blockades
possible, we allow the user to select between three different
types: current increase, current decrease, and hybrid (decrease
and increase). This feature can also be used in situations
where there is a very low SNR by exploiting the fact that
noise is symmetric around the baseline, while translocation
events (typically) are not. In our approach, the same dataset is
analyzed twice, once assuming current increase and again
using current decrease. Differences in the properties of the
resulting populations, such as the event rate, provide strong
evidence that translocation events are present, even when it is
difficult to differentiate individual events from noise.

3. Population sorting and characterization

Events can be sorted into different populations using a
number of different criteria. Our software allows the user to
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set a minimum and maximum translocation time, current
blockade, local baseline level, event number, and event
charge deficit (ECD) in order to exclude an event population.
In most situations, the ECD has a Gaussian distribution for a
population of molecules with homogeneous length. A non-
Gaussian or distorted ECD distribution can be caused by
significant molecule fragmentation, strong biomolecule–pore
interactions, low SNR, the presence of docking levels, or
overlapping populations. Importantly, selecting a population
using the ECD allows folded events to be included in the
selection. If folding is not possible due to the nature of the
analyte (nanoparticle, globular protein, etc) or because the
size of the pore is too small, selection using the translocation
time can also be useful. Unfolded events (i.e., events with no
extra peaks present) can be selected by looking at the max-
imum amplitude distribution, where similar to current histo-
grams, events contribute to Gaussian peaks depending on the
folding, with the first peak corresponding to unfolded events.
Selection on event number can be used in time-dependent
processes where conditions change during the experiment.
Finally, selecting using each event’s local baseline allows the
quick removal of clogs as well as, if preferred, translocation
events occurring while the pore was partially blocked. Once
an event population is selected, it can be characterized using
well-established properties such as the most probable trans-
location time, the most probable blockade amplitude, the most
probable ECD, and the event rate.

Tracking how properties change over time during an
experiment can be quite useful in many instances. Fluctua-
tions in the event rate as a function of time can indicate the
presence of a number of processes; sudden changes in the
event rate can indicate the presence of a clog or partial pore
blockage. A slow decrease in the event rate over time sug-
gests possible adsorption of the analyte into the pore

membrane or flow cell walls, which can, for example, occur
with DNA sticking to SiN in the presence of divalent cations.
A gradual increase in the event rate at the start of the
experiment, which subsequently reaches a plateau level,
indicates poor mixing conditions in the flow cell, an effect
noticeable with high-viscosity buffers. Tracking of the abso-
lute value of the baseline as a function of time can be used to
quantify effects such as pore growth. Indeed, for long-dura-
tion experiments where the baseline value is observed to
change significantly during the experiment, the amplitude of
the events should be normalized by the value of the local
baseline in order to be comparable to each other. This issue is
particularly relevant in measurements of small diameter pores.
These issues highlight the benefits of tracking how global
properties change during an experiment.

4. Local structures detection

Finally, we briefly describe how the presence of small current
spikes within a translocation event can be detected. Such
analysis can, for example, be useful for experiments involving
DNA-bound proteins or DNA knots. We begin by separating
events containing large folds from unfolded events containing
local spikes. This is accomplished by looking at the area
occupied by the current trace in between the first two DNA
blockade levels (I1 and I2). The first blockade level (I1) is the
most probable blockade level, with only a single (double-
stranded) DNA molecule inside the pore, while the second
blockade level (I2) is the most probable blockade level when
two DNA molecules are in the nanopore simultaneously.
These two levels can be determined from their respective
peaks in a current histogram. Figures 4(a), (b) provides two
example events, one unfolded and one with a large fold at the

Table 1. To quantify the improvement in the calculation of the baseline, we determine IΔB, which is the absolute value of the difference
between the mean of the 50 points preceding the start of the event and its local baseline value. The mean (〈IΔB〉) and STD of IΔB values in
each dataset are shown. All experiments were carried out in 1 M KCl, filtered at 10 kHz, and analyzed with a 5000-point moving average.
Improvements in the value determined for the baseline results in lower values of 〈IΔB〉 and its STD. In all cases, we see an improvement after
one iteration, with further iterations bringing only minimal improvements.

Dataset Num. of Events Event rate (Hz) Num. of Iter. 〈IΔB〉 (pA) STD (pA)

A λ DNA, 20 nm pore, 100 mV 1975 4.8 0 6.3 6.2
1 5.5 4.7
2 5.4 4.4
3 5.4 4.4

B λ DNA, 10 nm pore, 500 mV 1477 10.0 0 23.4 23.7
1 20.9 20.1
2 20.9 20.1

C T4 DNA, 20 nm pore, 100 mV 1287 0.3 0 4.7 4.1
1 4.6 3.7
2 4.6 3.7

D IgG antibody, 20 nm pore, 100 mV 10 221 162.2 0 6.6 6.7
1 6.0 6.0
2 5.9 6.0

E 99 kDa protein, 16 nm pore, 100 mV 6009 35.8 0 7.0 6.2
1 6.9 6.1
2 6.9 6.1
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Figure 4. Detection of local peaks within events. (a) Current trace of an unfolded event with a single spike. (b) Current trace with a folded
event. The horizontal green lines represent multiples of the single DNA blockade level (I1) as determined using a current histogram. (c)–(d)
The same events as in a-b with the area in between the first two blockade levels highlighted. The integral (charge deficit) of the current trace
between these two levels is shown shaded in red. This charge deficit is normalized by the total area given by the product (I1tFWHM) of the
DNA blockade level I1 and the FWHM translocation time tFWHM of the event, shown as a green rectangle. The resulting value is termed the
normalized charge deficit between I1 and I2 (NCD1–2). Events with folds have higher NCD1–2 values. (e) Typical distribution of NCD1–2

values for a protein–DNA experiment where DNA events contain short spikes, along with the positions of the two example events of panels a
and b. (f) Normalized cumulative histogram for the distribution shown in e. The vertical line shows the proportion of events that are typically
unfolded in these conditions as determined by using DNA-only control experiments. The vertical line is the intercept of the normalized
cumulative sum with this, and is used to determine the maximum NCD1–2 value allowed for an event to be considered unfolded.
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start. The area occupied by the current trace (between I1 and
I2) is shown in red in figures 4(c), (d), while the product
(I1tFWHM) of the DNA blockade level (I1) and the FWHM
translocation time of the event (tFWHM) is represented by a
green rectangle. The area occupied by the current (red) is
normalized using this value (green) to produce the normalized
charge deficit between I1 and I2 (NCD1–2). Events with large
folds have a large value of NCD1–2 while unfolded events
with spikes have smaller values. For example, the event in
figure 4(a) has NCD1–2 = 0.125, while the folded example of
figure 4(b) has NCD1–2 = 0.350. Circular molecules produce
NCD1–2 values close to 1. Figure 4(e) shows a typical dis-
tribution of NCD1–2 values for an experiment of DNA with
bound proteins that translocate through a 20 nm pore. In order
to determine a cutoff between folded and unfolded events, we
look at known folding rates from DNA-only experiments. For
example, in 1M KCl at 30 kHz bandwidth in a 20 nm pore
(i.e., the same conditions of the experiment of figure 4(e)),
lambda-phage DNA is observed to have approximately 36%
of events unfolded. Figure 4(f) shows the normalized cumu-
lative sum of the NCD1–2 distribution. A horizontal blue line
has been added at a value of 0.36; a vertical blue line defined
by the point of intersection (in this case, at NCD1–2 = 0.22)
between the curve and 0.36 provides the cutoff value used to
define events as unfolded or folded. Once a dataset is gen-
erated with only unfolded events, we then detect peaks pre-
sent within the DNA event. Essentially, our analysis comes
down to detecting events within events. For each peak
detected, we record the temporal position, the position nor-
malized with the total event duration, the peak FWHM, and
the peak amplitude. This simple approach allows for the quick
separation of folded and unfolded events and the subsequent
detection of any local structures present.

5. Discussion and conclusions

We have described a number of analysis techniques imple-
mented in our analysis software and provided a number of
examples for specific scenarios. Unlike previous works, we
have addressed various effects occurring throughout the
analysis procedure. The iterative detection algorithm that we
have described provides a simple way to overcome issues
typically encountered when using the thresholding detection
approach. Furthermore, we have outlined a new method for
separating folded events from unfolded events containing
current spikes, which is particularly useful in the detection of
local structures.

Our Transalyzer analysis package has been licensed
under the New BSD License, which encourages further
development and modification by other labs by imposing
minimal restrictions on its modification and redistribution. It
is freely available for download from our lab website (http://
ceesdekkerlab.tudelft.nl/downloads/). A subversion reposi-
tory has also been created on Google Code (http://code.
google.com/p/transalyzer/) to encourage future improve-
ments, additions, and code modifications by other labs.
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