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Temperature-dependent resistivity of single-wall
carbon nanotubes
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Abstract. – Samples of single-wall carbon nanotubes containing tubes with an “armchair”
wrapping have been produced and exhibit metallic behavior with an intrinsic resistivity which
increases approximately linearly with temperature over a wide temperature range. Here we
study the coupling of the conduction electrons to long-wavelength torsional shape fluctuations,
or twistons. A one-dimensional theory of the scattering of electrons by twistons is presented
which predicts an intrinsic resistivity proportional to the absolute temperature. Experimental
measurements of the temperature dependence of the resistivity are reported and compared with
the predictions of the twiston theory.

Since the discovery of carbon nanotubes in 1993 [1], [2] there has been interest in these
structures as prototypical molecular wires. Research in this direction has been given additional
impetus by the recent discovery of a new catalytic route to the synthesis of single-wall carbon
nanotubes (SWNTs) [3]. In this process the tubes self-organize during deposition in a two-
dimensional triangular lattice forming ropes (bundles of tubes), and ultimately mats (three-
dimensional samples of entangled ropes). Transmission electron microscopy indicates that up
to 40% of the nanotubes have the [10, 10] “armchair” wrapping, which is predicted by band
theory to be metallic. Indeed, metallic behavior has been observed in unoriented bulk samples
as well as individual ropes [3], [4]. A thorough understanding to the electronic properties of
the nanotubes is thus essential.

In this letter we study the intrinsic scattering processes responsible for the electrical re-
sistivity in nanotubes. Remarkably, we find that the coupling of the low-energy electronic
states to thermal shape fluctuations of the tubes leads to a resistivity which scales linearly
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with temperature even at temperatures well below the Debye temperature of the phonons
unlike in an ordinary metal. We then present a wide range of experimental evidence for this
temperature dependence, measured in both bulk samples as well as individual ropes. The
effects of inter-tube coupling on the electronic and vibrational degrees of freedom responsible
for this effect are also considered. We find that the one-dimensional physics controls the
transport properties of nanoropes over a wide parameter range relevant to the experimental
measurements.

Here we will focus on the [N,N ] “armchair” tubes, which band theory predicts to be
metallic [5], [6]. The low-energy electronic structure of a single armchair tube consists of
two pairs of one-dimensional bands which cross the Fermi energy, and these can be described
by the massless Dirac Hamiltonian

He =

∫
dx
∑
a,σ

ih̄vF(ψ†aσ+∂xψaσ+ − ψ
†
aσ−∂xψaσ−). (1)

Here ψaσ+ (ψaσ−) describes a right (left) moving electron with band index a = 1, 2 and spin
σ =↑, ↓. vF is the Fermi velocity.

The electrical resistivity is determined by the dominant mechanism for backscattering of
electrons. The backscattering of electrons due to repulsive electron-electron interactions has
been studied within a model for a two-channel Hubbard “ladder” [7]-[9], and one finds that
above a crossover temperature it leads to a resistivity which scales linearly with temperature [8].
Here we consider a different and what we believe to be the dominant scattering process,
namely the coupling between electrons and elastic deformations of the tubes. Our theory is
the tubule analog to the Bloch Gruneisen (BG) theory of the scattering of a Bloch electron by
the low-energy long-wavelength acoustic modes of the lattice [10]. For the tubules one finds
that modes which twist the tube around its axis of symmetry locally compress and stretch
bonds on the surface of the cylinder and are effective at backscattering electrons [6]. However,
the dispersions of both the electronic and lattice degrees of freedom are unusual for these
structures, which leads one naturally into a regime in which the modes responsible for the
backscattering are always heavily thermally populated. This implies a temperature-dependent
resistivity which is proportional to the absolute temperature even well below the nominal
Debye temperature for this system, as observed experimentally, and in contrast to the usual
BG theory of a conductor.

We consider the scattering of electrons by thermally excited long-wavelength “twistons”,
i.e. the acoustic torsional modes of the tubule. The coupling between electrons and twist is
given by [6]

He−t = λ

∫
dx
∑
a,σ

∇θ
(
ψ†aσ+ψaσ− + h.c.

)
, (2)

where θ(x) is the angle of the twist at a position x along the tubule. The coupling constant for
an [N,N ] tube is λ = 3Nβh̄vF/4π, where β = ∂ ln t/∂ ln d describes the change in the bond
hopping amplitude t with bond length d. The dynamics of long-wavelength twistons may be
described by the continuum elastic Lagrangian,

Lt =
1

2

∫
dx
[
Mtθ̇

2 − Ct(∇θ)
2
]
, (3)

where Mt is the moment of inertia per unit length of the tube and Ct is the twist modulus.
The twiston dispersion is then ωq = vtq with vt =

√
Ct/Mt.

The effect of twistons is rather unusual because they are the only long-wavelength phonons
which couple the right- and left-moving electrons in the Dirac spectrum for this system [6].
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Fig. 1. – Calculated temperature-dependent resistivity due to twiston scattering. The upper bold
curve is calculated for a one-dimensional model for which ρ ∝ T . Including three-dimensional intertube
effects in both the electron and twiston degrees of freedom we obtain the lower curve, which shows
that the linear-temperature dependence occurs in a three-dimensional sample above relatively low
crossover temperature. The inset shows the process in which an electron scatters from the right- to
left-moving branch, emitting a long-wavelength twiston.

Unlike the phonon scattering in an ordinary metal twiston scattering introduces a single
low-temperature scattering event which backscatters conduction electrons, as shown in the
inset of fig. 1. Since the momentum of a typical electron at temperature T is kBT/vF, the
energy of the relevant twistons is of order 2kBTvt/vF. Since vt � vF, these phonons are
always heavily thermally populated. For this reason the system is effectively in the “high
temperature” limit for phonon scattering even at physical temperatures well below the Debye
temperature.

To quantify this result we study the backscattering rate for an electron with momentum k
which can be computed from Fermi’s golden rule:

1

τ
= 2πλ2

∫
dq

2π

vtq

Ct
coth(

h̄ωq

2kBT
)δ (vF(2k − q)) , (4)

where we have ignored the small twiston energy h̄vtq in the delta-function. This rate is
independent of k and linearly proportional to T . The one-dimensional electrical resistivity
is given by ρ1D = (h/e2)/(8vFτtr), where for pure backscattering the transport lifetime is
τtr = τ/2. We thus find

ρ1D =
9

32π2

h

e2

β2

Nct
kBT, (5)

where ct = Ct/N
3 is independent of N .

The parameters in our theory can be estimated from corresponding quantities for graphite.
Using the in-plane shear modulus modulus, C66 = 44 × 1011 dyn/cm

3
[11] we estimate

ct = 18 eVÅ. This predicts a velocity h̄vt = 0.09 eVÅ = 1.4 × 104 m/s which is equal to
the speed of the in plane transverse acoustic phonon of graphite. In addition, we estimate
h̄vF = 5.3eVÅ and β = 2.3 [12]. For a rope of triangular close-packed [10, 10] tubes with
a lattice constant 17 Å, this leads to a temperature-dependent contribution to the three-
dimensional rope resistivity with slope dρ3D/dT = 0.005 mΩcm/K.

Balents and Fisher have recently shown that Umklapp scattering due to electron-electron
interactions also leads to a resistivity which is linear in temperature [8]. Whereas the twiston
resistivity scales as 1/N , the Umklapp resistivity is proportional to 1/N2. Thus for sufficiently
large tubes the lattice effects should dominate. Comparing the prefactors, we estimate that for
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N = 10 the two have comparable magnitudes, with the twiston resistivity larger by a factor of
4 [13]. We also note that for an isolated graphite sheet, scattering of the π electrons from the
transverse acoustic phonons (the analog of the twistons of the tubule) also leads to a resistivity
proportional to the absolute temperature, as we find in eq. (5) [14].

The above discussion has focused on the resistivity of an isolated tube and ignores three-
dimensional effects for the dynamics of both the electrons and the phonons, which may be
crucial for the correct interpretation of measurements on bundles (or “ropes”) of tubes. We
now generalize the model to include these effects. At low frequency, twistons on neighboring
tubes should be coupled elastically, which leads to a librational gap in the twiston spectrum for
the inter-tube twistons, with the dispersion relation ωq =

√
v2

t q
2 + ω2

0. The energy scale h̄ω0

may be estimated by considering the corresponding phenomena in graphite and in crystalline
C60. In graphite the relevant zone boundary phonon has energy 4 meV [11], whereas the
energy of librons in crystalline C60 span the range 2–6 meV [15].

Coherent tunneling of electrons between the tubes also introduces a transverse bandwidth
in the problem and destroys the nesting of the Fermi surface. For a transverse bandwidth W , a
phonon with wavevector as large as q ≈W/vF is needed is needed to backscatter, so that at low
temperature, direct backscattering can ultimately be frozen out over a large part of the Fermi
surface. W is difficult to estimate, because it will depend on the details of the orientational
registry between neighboring tubes. However, it is unlikely that it will be negligible for this
system. Solid phases of C60 have an interball electronic bandwidth of order 0.5 eV [16].
In graphite tunneling between neighboring layers leads to two interlayer bandwidths, one of
order 1 eV and one with a much narrower width of order 10 meV [17]. Electronic structure
calculations within the local density approximation for a three-dimensional lattice of [6, 6]
tubes have estimated a bandwidth of order 0.5 eV [18].

Our estimates of the scattering rates, and thus the resistivity due to twiston scattering may
be generalized to include both of these effects. In fig. 1 we plot the resistivity as a function
of temperature calculated using our one-dimensional model, and recalculated including these
three-dimensional effects for the representative parameters ω0 = 4 meV and W = 0.5 eV. We
find that the resistivity of the three-dimensional system is then essentially linear for T > 100 K,
which is well below the effective Debye temperature for the twistons which is of order 1000 K.
We find that in this system the one-dimensional behavior will control the resistivity so long
as (vt/vF)W > h̄ω0 as seems likely in this system. The dynamics is then essentially one
dimensional for kBT > max(h̄ω0, (vt/vF)W ). We note that Umklapp scattering is suppressed
for kBT < W . Due to the small ratio vt/vF ≈ 0.02, twiston scattering is more robust in the
presence of inter-tube coherence.

To test the above theory, it is clearly desirable to measure the electrical transport through
a single isolated tube. However, to date, single-tube transport has only been measured at very
low temperature, where Coulomb charging effects dominate [19], [20]. In fig. 2 we present 4
different measurements of the temperature dependence of the electrical resistivity of nanotube
ropes and unoriented bulk samples, all prepared as described in ref. [2]. The top curve in
fig. 2(a) is a 4-probe 1 KHz measurement on a bulk sample using silver paint contacts.
Above about 200 K ρ increases linearly with temperature, which confirms and extends to
580 K the linear behavior previously observed up to 470 K [4]. The logarithmic derivative
obtained from a linear fit in the interval 300 K < T < 580 K is 0.0008 K−1. The lower
curve is derived from a microwave absorption measurement on a few micrograms of similar
material [21]. Its logarithmic derivative, 0.001 K−1, is comparable to the 4-probe value.
Figure 2(b) shows a 2-probe measurement of ρ‖ (described previously [4]) on several ropes in
parallel. Again, linear behavior is observed over a wide temperature range, with a somewhat
smaller logarithmic derivative, 0.0004 K−1. 4-probe absolute ρ‖ measurements were performed
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Fig. 2. – Measured resistivities of samples of carbon nanotubes. (a) Bulk material: The top curve
is a 4-probe measurement. The lower curve is measured by microwave absorption. (b) 2-probe
measurement on several ropes in parallel. (c) 4-terminal measurement of a single rope.

at 300 K on similar samples and span the range 30–100 mΩcm. Figure 2(c) shows a 4-probe
measurement on a single 7 nm diameter rope with voltage contacts 500 nm apart. The room
temperature resistivity is 90 mΩcm, which is consistent with the above measurement. The
slope dρ/dT ≈ 0.1 mΩcm/K.

These measurements clearly indicate metallic behavior at high temperatures with ρ increas-
ing approximately linearly with temperature. Taking ρ‖(300 K) = 90 mΩcm, and assuming
the T -dependence of the bulk samples is dominated by ρ‖(T), we infer the absolute slope
from the first three measurements: dρ/dT ∼ 0.07, 0.09 and 0.04 mΩcm/K. While the four
measurements of the slope agree to within a factor of 2.5, they are a factor of 8–20 larger
than the twiston scattering theory prediction. Part of this discrepancy could arise from the
presence of non-metallic tubes in the ropes. Recent electron diffraction measurements [22] on
similar materials have indicated that more than 50% of the tubes in a rope are chiral and hence
insulating [5], [6]. The presence of such “dead” tubes would lead to an overestimate of the
rope’s intrinsic resistivity. In addition, variations in the electron tunneling matrix elements
between different tubes in a rope —which depend sensitively on the relative orientation of
the tubes— could lead to an additional source of backscattering which is not present for a
single tube. In order to distinguish such effects from the intrinsic resistivity of a single tube a
high-temperature transport measurement on a single tube is clearly desirable.

It is striking that in addition to the high-temperature linear resistivity, all the experimental
measurements show an upturn in the resistivity at low temperature. The onset of this low-
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temperature behavior depends on the sample morphology and can be as low as 10 K for single
ropes. Other authors have suggested that this upturn may signal a condensation of the system
to form a collective charge- or spin- density wave ground state in the tube [8], [9]. However,
the observed dependence of this crossover on the sample morphology and quality suggests that
disorder or other three-dimensional effects may actually control this low-temperature behavior.
It will be important to carry out further experimental work to understand the origin of this
nonconducting low-temperature behavior.
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