Individual Single-Walled Carbon Nanotubes as Nanoelectrodes for Electrochemistry

Iddo Heller, Jing Kong, Hendrik A. Heering, Keith A. Williams, Serge G. Lemay, and Cees Dekker*

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Received October 31, 2004; Revised Manuscript Received November 26, 2004

ABSTRACT

We demonstrate the use of individual single-walled carbon nanotubes (SWNTs) as nanoelectrodes for electrochemistry. SWNTs were contacted by nanolithography, and cyclic voltammetry was performed in aqueous solutions. Interestingly, metallic and semiconducting SWNTs yielded similar steady-state voltammetric curves. We clarify this behavior through a model that considers the electronic structure of the SWNTs. Interfacial electron transfer to the SWNTs is observed to be very fast but can nonetheless be resolved due to the nanometer critical dimension of SWNTs. These studies demonstrate the potential of using a SWNT as a model carbon nanoelectrode for electrochemistry.

Electrodes with nanometer dimensions provide exciting new tools for electrochemical studies. The small dimensions lead to a high current density at the electrode surface, allowing the study of fast heterogeneous electron transfer kinetics, molecular interactions, and mass transport in the nanometer regime. In addition, exploiting the small dimensions of nanoelectrodes may allow innovative biological applications by means of probing local cellular environments and ultimately measuring the activity of a single redox-enzyme coupled to a nanoelectrode. Several techniques have been developed for the fabrication of nanoscale electrodes for electrochemistry.1–5 However, no nanoelectrode fabrication technique has yet been developed where the electrode geometry is known at the nanometer level, which poses a limitation to the interpretation of electrochemical data.6

Here we explore the use of individual single-walled carbon nanotubes (SWNTs) as electrodes for electrochemistry. The unique structural and electronic properties of a SWNT render it an ideal candidate to function as a model carbon nanoelectrode for electrochemistry. SWNTs have a very well defined cylindrical geometry and are readily synthesized with a diameter in the nanometer range. Moreover, advances on the functionalization of SWNTs6,10,11 open the route toward electrochemical single-biomolecule studies using individual SWNT electrodes.12

Large ensembles of carbon nanotubes have been used as electrode material for electrochemical experiments, which allowed exploring their high chemical stability and good conductive properties.8 Although electrochemistry with an individual 150 nm diameter multiwalled carbon nanotube (MWNT) has been reported,13 the unique structural properties of an individual SWNT as an electrode with a nanometer critical dimension have to our knowledge not been explored thus far.

We report the first study of electrochemistry using individual SWNT electrodes. We observe a steady-state electrochemical current that is proportional to the exposed length of the SWNT. Interestingly, both metallic and semiconducting SWNTs yield similar behavior. We demonstrate that this can be understood from a model that incorporates the electronic structure of the electrode into the estimation of heterogeneous electron-transfer kinetics. The experimental curves can be described by classic Butler–Volmer kinetics and show that the SWNT sidewall allows for high electron-transfer rates.

Figure 1a shows the device schematic consisting of a SWNT on a substrate contacted by leads that are covered by an insulating layer. SWNTs are grown through chemical vapor deposition9 on a substrate consisting of a degenerately doped silicon wafer with a 500 nm thermally grown oxide layer. The sample is coated with a 20 nm electron-beam evaporated SiO2 layer.14 After consequent resist patterning by electron-beam lithography, the SiO2 layer is briefly etched in a highly diluted buffered HF solution to expose the SWNTs. We contact the SWNTs by 40 nm thick titanium
The devices were exposed to aqueous solutions containing reduced ferrocenylmethyl-trimethylammonium (FcTMA\(^{+}\)), with counterion hexafluorophosphate (PF\(_6^{-}\)).\(^5\) FcTMA\(^{+}\) was chosen for its uncomplicated electrochemistry and its good chemical stability in an aerobic aqueous environment. No supporting electrolyte was used. To minimize evaporation, the solution was contained by a poly(dimethylsiloxane) (PDMS) cell pressed against the sample and sealed using a commercial Ag/AgCl 3M NaCl reference electrode (model MF-2078, BAS). Sampled-current voltammetry was performed in a low-current measurement setup as depicted in Figure 1c using the SWNT as the working electrode. An electrometer (Keithley 6430) was used to cycle the potential applied to the SWNT between 0.2 and 0.6 V with respect to the grounded Ag/AgCl reference electrode. Typically, the current is sampled over 0.2 s after a delay of 0.1 s per 10 mV step.

We observed a steady-state electrochemical current through the SWNT devices. In Figure 1d, we show the cyclic voltammograms acquired from two metallic SWNT devices of different exposed length, and a control device on the same wafer. At high potential, an anodic current was observed that corresponds to the oxidation of FcTMA\(^{+}\). The magnitude of the steady-state electrochemical current is of the order of several picoamperes and scales with the length of the exposed section of SWNT. The black curve in Figure 1d is a measurement for a control pit that lacks a SWNT on the same wafer. This control pit was created near titanium leads similar to the SWNT devices and displayed no electrochemical wave due to the absence of a SWNT. These measurements show that the electrochemical current can be attributed to the oxidation of FcTMA\(^{+}\) at the SWNT sidewall, and the titanium leads are sufficiently insulated from solution.

The voltammetric curves obtained from the SWNT devices deviate from the classic nernstian curve-shape controlled by thermodynamics and mass transport. Within the scanned potential window we do not observe a diffusion-limited plateau and the voltammetric waves appear stretched. We attribute this to the heterogeneous electrode kinetics that control the rate of the electrode reaction. Due to the small critical dimension of the SWNT, mass transport may become comparable to or larger than the rate of electron transfer. In this case there will be a deviation from thermodynamic equilibrium between oxidized and reduced species at the electrode surface and the voltammetric curve will depart from the nernstian limit.

In total we fabricated four wafers with multiple devices per wafer. The devices on one wafer are processed simultaneously. We measured 43 devices, of which 11 devices gave no or poor waves, which may be attributed to the breakdown or contamination of devices. The remaining 32 devices yielded a range of voltammetric behavior similar to the curves displayed in Figure 2a and 2b. Although the deviation from nernstian voltammetry varies between the curves, the shape is relatively consistent for simultaneously processed devices, suggesting that the observed variations are related to sample preparation. We tentatively attribute this to contamination of the SWNT surface, which can effectively slow the rate of electron transfer, changing the classic nernstian appearance of the steady-state current–potential characteristics.

We used both metallic and semiconducting SWNT devices for electrochemistry, as shown in Figure 2a and 2b, respectively. Interestingly, no significant difference in electrochemical properties was found. In Figure 2c we plot the electrochemical current at 0.6 V against the exposed length of SWNT for all devices of the wafer for which the voltammograms displayed the smallest departure from nernstian.
tian voltammetry, i.e., the devices that are considered to be the least or not contaminated. A linear fit through the origin is shown yielding $i(0.6 \text{ V}) = 22 \pm 1 \text{ pA/\mu m}$. Devices on other presumably more contaminated wafers display a smaller current per $\mu \text{m}$ of exposed SWNT. The reduced current, combined with the departure from the nernstian voltammetric curve shape, is consistent with a kinetic limitation on the reaction rate.

The enhanced mass transport rate at a nanoelectrode allows the kinetics of electrode reactions to be accessed through voltammetry. Using the classic Butler–Volmer model of electrode kinetics, the oxidative current $i_{\text{BV}}$ for a one-step, one-electron process can be written as

$$i_{\text{BV}} = \frac{i_{\text{mt}}}{1 + e^{-(U - U^o)/RT} + K_0^{-1} e^{-F(1-\alpha)(U - U^o)/RT}}$$

(1)

Here $i_{\text{mt}}$ is the mass-transport-limited current, $F$ is the Faraday constant, $R$ is the molar gas constant, $T$ is absolute temperature, $U$ is the applied potential, $U^o$ is the formal potential of the redox-couple, $\alpha$ is the transfer coefficient, and $K_0$ is the dimensionless heterogeneous rate constant, $K_0 = FACk^0/i_{\text{mt}}$, where $A$ is the electrode surface area, $C$ the bulk concentration of the reduced species, and $k^0$ the standard heterogeneous rate constant. Figure 3 shows a fit of eq 1 to the experimental voltammogram of a 2 $\mu \text{m}$ long metallic SWNT with a 1.8 nm diameter, using $U^o = 0.42 \text{ V}$, $C = 1.2 \text{ mM}$, and $A$ was calculated as $\pi rL$, where the radius $r$ of the SWNT was determined from AFM. Equation 1 appears to provide an excellent description of the experimental curve shape. The fit of Figure 3 yields $k^0 = 7.62 \pm 0.03 \text{ cm/s}$, $\alpha = 0.670 \pm 0.002$ and $i_{\text{mt}} = 48.4 \pm 0.1 \text{ pA}$. Further research is needed to determine to what extent this high electron-transfer rate is intrinsic to the sidewall of the SWNT or should be attributed to surface defects along the SWNT sidewall.

Two further remarks can be made with respect to the curve fitting of Figure 3. First, no contamination of the SWNT surface was taken into account. As a result of a potential extra tunneling barrier and reduced electroactive area on the SWNT, the result for the heterogeneous rate constant may be underestimated. Second, the data were acquired in the absence of supporting electrolyte. Although caution should be taken to interpret voltammetric curves acquired in the absence of supporting electrolyte, preliminary measurements in the presence of a supporting electrolyte (0.1 M KCl) show the same current—potential curve shape, indicating that the electrical double-layer has little effect on voltammetry at the SWNT electrode. Indeed, due to the high aspect ratio, the depletion layer around the SWNT is about 2 orders of magnitude larger than the electrical double-layer, which is
concentration of 1.2 mM FcTMA+ provided that a common microelectrode, giving a steady-state current resulting steady-state concentration profile in Figure 4b. We performed a series of simulations for a 1 nm radius SWNT in a pit of height (H) 0.5 μm, varying the width (W) and length (L), as displayed in Figure 4c. Indeed as was experimentally observed, the electrochemical current is proportional to the exposed length of the SWNT. In addition, the electrochemical current is rather independent of W, provided that W > 2H. The diffusion-limited current has a weak dependence on the radius of the SWNT. For example, doubling the radius of the SWNT typically causes a mere 10% increase of the diffusion-limited current. The calculations show that a device of a 1 nm radius SWNT crossing a pit with dimensions L = 1 μm, W = 1.5 μm, and H = 0.5 μm gives a diffusion-limited current of 37 pA for a bulk concentration of 1.2 mM FcTMA+ using a diffusion coefficient D = 7.5 x 10^-6 cm²/s. Note that the end of a SWNT, modeled as a 1 nm radius hemispherical electrode for which \( i_{\text{int}} = 2\pi FDCr = 2\pi FDCr \), would by itself give only a 0.5 pA diffusion-limited current, which shows that the experimentally observed current can indeed be primarily attributed to the SWNT sidewall.

We can use the simulation routine as explained above to predict the diffusion-limited current for each specific device of Figure 2c. A linear regression of the simulated currents against the exposed lengths yields \( i_{\text{int}} = 36 \pm 1 \) pA/μm. The experimental values of the mass-transport-limited current, extracted from the fits of the experimental curves, however, yielded \( i_{\text{int}} = 24 \pm 2 \) pA/μm, which is 33% less than the simulated mass-transport-limited current. This difference may be attributed to several factors: First, the absence of supporting electrolyte causes a migrational contribution to the mass-transport-limited current. Using the method of Amatore et al., \( i_{\text{int}} \) migration of FcTMA+ will cause a 15% reduction of the mass-transport-limited current. Second, a partial blocking of the electroactive surface would also decrease the mass-transport-limited current.

The estimation of \( i_{\text{int}} \) allows us to calculate the relevance of heterogeneous electrode kinetics. For a 1 μm long SWNT with a 1 nm radius in a 1 x 1.5 x 0.5 μm (L x W x H) pit exposed to a FcTMA+ solution with \( k_0 \sim 4 \) cm/s, we find that \( k_0 \sim 0.4 \), indicating that heterogeneous electrode kinetics should significantly affect the voltammetric wave shape. For comparison, the dimensionless rate constant of a hemispherical electrode is given by \( k_0 = k_0r/D \). A dimensionless rate constant of 0.4 thus would require a 7.5 nm radius hemispherical electrode. However, the diffusion-limited current obtained from a 7.5 nm radius hemispherical electrode is merely \( i_{\text{int}} \sim 4.1 \) pA, which is an order of magnitude smaller than the current calculated for the 1 μm long SWNT electrode. Therefore, the SWNT electrode allows electron transfer rates to be resolved at a higher current level and thus an accordingly better signal-to-noise ratio. This is a direct consequence of the very high surface area of a SWNT combined with its nanometer-sized critical dimension, its radius. In addition to the easy fabrication due to their micrometer-long lengths, a SWNT electrode therefore has significant advantages over other available nanoelectrodes. Figure 4d shows the deviation from nernstian behavior of the voltammetric wave shape at a SWNT electrode caused by Butler–Volmer kinetics, using \( \alpha = 0.65 \) and \( k_0 = 4 \) cm/s.

Our data show essentially the same electrochemical behavior for metallic and semiconducting SWNTs. To clarify how the electronic structure of SWNTs affects the electrochemical reaction rate, we employ a model that considers the structure of the electronic states on the electrode and on the reactants in solution. Careful consideration of the relevant capacitances is required: Because of the low density of electronic states (DOS) on a SWNT as compared to a typical metal, the liquid acts as a highly effective gate that easily changes the SWNT Fermi level. Figure 5a depicts the solution–SWNT interface, represented by the intrinsic SWNT quantum capacitance \( C_q \) in series with the capacitance of the electrical double-layer \( C_d \), which is formed by ions in solution attracted by the charge on the SWNT.\(^{12,19}\) Varying

\( i_{\text{int}} = 2\pi FDCr \).

\( i_{\text{int}} = 2\pi FDCr \).
and the electrostatic potential $U$ of the low DOS of a SWNT, applied potential largely tunes the SWNT Fermi energy and in the electrical double-layer changes very little during this ratio of the capacitances is that the charge on the SWNT layer such that magnitude and thus

Nano Lett., Vol. 5, No. 1, 2005

The situation is drawn for a semiconducting electrode, though it is similarly applicable to a metallic electrode. $E = 0$ is defined as the potential of the reference electrode $E_{\text{ref}}$. Shaded regions indicate occupied electronic states. The electrode states are depicted for $U_{\text{lg}} = 0$ (where Fermi energy $E_F$ and $E_{\text{lg}}$ align) and $U_{\text{lg}} \neq 0$. The potential change $\Delta U_{\text{lg}}$ over the interface causes a chemical ($\Delta E_{\text{lg}}/e$) and electrostatic potential change ($\Delta U_{\text{es}}$), where $\Delta U_{\text{lg}} = \Delta E_{\text{lg}}/e + \Delta U_{\text{es}}$. The overlap in energy of the occupied reactant states with the unoccupied SWNT states determines the rate of reaction. The SWNT states are depicted by the DOS of a metallic [9,0] SWNT (blue) and a semiconducting [10,0] SWNT (red). (d) Calculated $k_{\text{ox}}/k_{\text{met}}$ as a function of $U_{\text{lg}}$, where $k_{\text{met}}$ is the calculated oxidation rate for the metallic SWNT at $U = U^0$. Calculations were done for $U^0 = 0.42$ V using a rough lower bound estimate of $\lambda = 0.5$ eV and the center of the SWNT band structures located at 0.2 eV (p-doping).

Instead of the potential over the double-layer. We estimate the rate of oxidation $k_{\text{ox}}$ as depicted in Figure 5b and 5c, based on the integration over the occupied states of the reactants in solution that coincide in energy with the unoccupied states of the SWNT according to $^{20,21}$

$$
\frac{k_{\text{ox}}(U_{\text{lg}})}{k_{\text{met}}} \propto \int_{-\infty}^{\infty} W_F(\lambda,E)[1 - f(E,U_{\text{lg}})]\rho(E,U_{\text{lg}}) \, dE \quad (2)
$$

Here the function $W_F(\lambda,E)$ represents the reactant states as a Gaussian distribution in the Gerischer–Marcus representation as a function of the reorganization energy $\lambda$ and energy difference $E$ between SWNT and the plane of electron transfer. The functions $f(E,U_{\text{lg}})$ and $\rho(E,U_{\text{lg}})$ are respectively the Fermi–Dirac distribution and the SWNT DOS, both dependent on the applied potential $U_{\text{lg}}$. As a result of the small $C_q$, the SWNT DOS remains essentially fixed to the solution states.

It is known that the band-gap region of a semiconducting electrode can have a large effect on the observed electrochemical reaction rate. Despite the presence of a band gap in the semiconducting SWNT DOS, we observe that one obtains highly similar electrochemical responses from metallic and semiconducting SWNTs. This can be understood from the following points. From previous studies of similar water-gated SWNT devices it was found that the SWNTs are considerably p-doped. $^{12,19}$ Therefore, over the electroactive potential range of FcTMA$^+$, the Fermi level is likely below the band-gap region. A voltammetric sweep toward 0.6 V vs Ag/AgCl will lower the SWNT Fermi level even further away from the gap, increasing the amount of unoccupied states that promote the rate of oxidation of FcTMA$^+$. Second, electronic states away from the Fermi level contribute significantly to the rate of reaction due to the width of the reactant distribution, typically in the order of 1 eV, causing an averaging effect on the SWNT DOS. Figure 5d shows the calculated oxidation rates for a [9,0] metallic and a [10,0] semiconducting SWNT. The result demonstrates that it is possible to obtain similar electrochemical behavior from metallic and semiconducting SWNTs. Extensive calculations of oxidation rates for SWNTs with different chiralities and diameters between 0.7 and 3 nm show that the apparent $k^{0}$ can vary by about a factor of 3. $^{21}$ This variation, however, is not directly correlated to the metallic or semiconducting nature of the SWNT, nor does it directly reflect the diameter of the SWNT. This variation is caused by the position of the van Hove singularities with respect to the energy of the reactant state. To what extent the experimentally observed variation of the apparent $k^{0}$ as presented in this report can be attributed to band-structure effects is not clear. Currently we are conducting experiments to address this issue in more detail.

In conclusion, we have presented the first demonstration of individual SWNTs as nanoelectrodes for electrochemistry. SWNTs appear to provide unique tools for both fundamental and applied electrochemical studies. We obtain a steady-state electrochemical current and a very high rate of electron transfer to the SWNT sidewall. Because of the nanometer diameter, the kinetics of fast electrode reactions can be
resolved. Therefore, an individual SWNT provides a straightforward and reproducible way to fabricate nanoelectrodes with a well-defined geometry capable of probing fast electrode kinetics at relatively high steady-state current levels. The characteristic and well-defined SWNT DOS creates an excellent opportunity to study the effect of the distinct electronic structure of the electrode on the rate of electron transfer. The high aspect ratio of a SWNT can be further exploited to fabricate a nanometer-sized local electrochemical probe. In addition, the possibility of functionalization of the SWNT nanoelectrode opens the route toward electrochemical single redox molecule studies.

Acknowledgment. We thank Bernadette Quinn for helpful discussions. This work was supported by the Netherlands Organization for Scientific Research (NWO) and the Foundation for Fundamental Research on Matter (FOM).

References

NL048200M