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ABSTRACT: Post-translational modifications (PTMs) of proteins play key roles in cellular processes. Hence, PTM
identification is crucial for elucidating the mechanism of complex cellular processes and disease. Here we present a method for
PTM detection at the single-molecule level using FraC biological nanopores. We focus on two major PTMs, phosphorylation
and glycosylation, that mutually compete for protein modification sites, an important regulatory process that has been
implicated in the pathogenic pathways of many diseases. We show that phosphorylated and glycosylated peptides can be clearly
differentiated from nonmodified peptides by differences in the relative current blockade and dwell time in nanopore
translocations. Furthermore, we show that these PTM modifications can be mutually differentiated, demonstrating the
identification of phosphorylation and glycosylation in a label-free manner. The results represent an important step for the single-
molecule, label-free identification of proteoforms, which have tremendous potential for disease diagnosis and cell biology.
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In the pursuit of a comprehensive understanding of the
molecular mechanisms at work in living organisms, one

inevitably arrives at the study of proteins. These organic
polymers are the molecular machines of the cell that enable a
spectacularly wide array of functionalities. Cells employ
proteins for a host of different processes such as signaling,
recognition, differentiation, gene regulation, structuring, and
many more.1 To realize such a diverse set of functionalities,
cells need a way to diversify a wide array of different proteins.
Post-translational modifications, or PTMs, are one of the
methods by which the protein pool of a cell can be expanded
by orders of magnitude.2,3 This collective term refers to all
modifications occurring during and after the translational
synthesis of proteins, usually involving the addition of chemical
groups to specific amino acids along the protein. PTMs play
vital roles in protein (in)activation, stability, and recognition,
among other things.4−6 In the medical field in particular,
PTMs have been found to play key roles in pathogenic
pathways for cancer, Parkinson’s disease, Alzheimer’s disease,
and diabetes.7,8 Current detection methods face challenges in

detecting low-copy number variants within the vast mixture of
proteins in biological samples. Consequently, it is pivotal to
detect protein PTM variants with high sensitivity.
Mass spectrometry is the current standard method for PTM

detection.9,10 The technique, however, has its limitations,
mainly brought about its narrow dynamic range (104−105)
compared to the immense dynamic range of protein
concentrations that are present in in vivo samples (108−
109).3,11−13 Challenges arise when low-copy number proteo-
forms are of interest but get swamped in a sea of others.
Furthermore, a protein can have different kinds and quantities
of PTMs. In practice, sparsely occurring proteins are invisible
in the noise of the diverse mixture of abundant proteins.11 For
this very reason, many biomarkers for cancer and other
diseases escape timely detection.14−16 To alleviate this
problem, prepurification steps based on chromatography or

Received: July 31, 2019
Revised: October 10, 2019
Published: October 11, 2019

Letter

pubs.acs.org/NanoLettCite This: Nano Lett. 2019, 19, 7957−7964

© 2019 American Chemical Society 7957 DOI: 10.1021/acs.nanolett.9b03134
Nano Lett. 2019, 19, 7957−7964

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

T
U

 D
E

L
FT

 o
n 

Fe
br

ua
ry

 2
1,

 2
02

0 
at

 1
4:

39
:2

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/NanoLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.nanolett.9b03134
http://dx.doi.org/10.1021/acs.nanolett.9b03134
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


antibodies are often used to enrich samples of interest.9,15

Other approaches include the PTM-specific removal and
subsequent chemical labeling, enabling the researcher to detect
it through characteristic mass-shifts in a mass spectrum.15,17

These enrichment and labeling methods are, however, time-
consuming and highly PTM specific which discourages its use
in the blanket analysis approaches that are sought after in
clinical research.
Single-molecule techniques, such as nanopores, open the

door for new approaches for PTM detection with ultimate
sensitivity. In conventional MS, thousands of peptides are
ionized and measured at the same time. As a consequence,
low-copy number species are often impossible to distinguish
from background noise in the measurements. Through the use
of nanopores, single molecules can be analyzed and therefore
in principle low-copy-number species can be detected. In a
nanopore setup, an insulating membrane with a nanometer-
sized aperture separates two electrolyte-filled compartments.
Upon applying an electric potential, an ionic current flows
through the nanopore and a decrease in the current is
measured when a protein translocates through the pore.18,19

Several groups have previously reported the study of
peptides20−31 or unfolded proteins32−40 translocating through
a nanopore. In addition to that, others have reported the

capabilities of nanopore sensors as mass detectors.22,29,30,41

Features in the protein structure, such as PTMs, can result in
slightly different current blockage characteristics, allowing for
label-free detection. In recent years, this principle was used for
the detection of large PTMs such as a large N-glycosylation or
ubiquitination.42,43 The detection of small PTMs (<500 Da)
has remained a challenge and so far was only demonstrated for
a phosphorylated protein.44

It has been recently shown that phosphorylation and O-
glycosylation GlcNAc (N-acetylglucosamine) are intricately
connected and exhibit a complex interplay within the cell.7

These PTMs compete for serine and threonine modification
sites and therefore mutually regulate each other. Malfunctions
of this regulatory network have been associated with chronic
diseases such as diabetes, cancer, and Alzheimer’s.7,8,10 For
example, in Alzheimer’s disease a decrease in the levels of O-
GlcNAc in the tau protein has been associated with its hyper-
phosphorylated state and the formation of the intraneuronal
tangles characteristic of the disease. Consequently, finding
efficient mechanisms for the label-free detection of these PTMs
is of direct medical relevance.
Here, we demonstrate the proof of concept of label-free

detection of both phosphorylation and O-glycosylation and
their discrimination from unmodified peptides. This is

Figure 1. (a) Schematic representation of the measurement setup, where peptides are driven through a FraC nanopore. Experiments were done
with a nonphosphorylated peptide (left) and with an equimolar-concentration mixture of phosphorylated and nonphosphorylated peptides (right).
(b) Scatter plot of relative blockade versus dwell time (top), and relative-blockade histogram (bottom) for the nonphosphorylated peptide. (c)
Scatter plot of relative blockade versus dwell time for the mixture of phosphorylated and nonphosphorylated peptides. A second population with
higher relative blockade is now visible, as shown by the arrows.
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achieved using a biological nanopore (Fragaceatoxin C, or
FraC)45 and a model peptide system in which a serine is
modified with either of these PTMs. We first show that
phosphorylated and nonphosphorylated peptides can be
distinguished by their difference in the relative current
blockade. Subsequently, the same is done for glycosylated
and nonglycosylated peptides. Finally, we demonstrate for the
first time that phosphorylated and O-glycosylated peptides can
be differentiated from each other in a label-free manner.
Results. For the detection of phosphorylation and O-

glycosylation, we used a model peptide (N′-EEEEEE-
EEEESGSGSGSKGSRRRRRRRRRR-C′) and the FraC nano-
pore. Our approach is presented in Figure 1. This peptide
contains a stretch of 10 negatively charged glutamic acid
residues at the N-terminus and a stretch of 10 positively
charged arginine residues at the C-termimus. The two charged
regions are connected by a flexible sequence of glycine (G)
and serine (S) residues. Upon applying a negative bias to the
trans compartment, the positive R-stretch enters the pore first,
thus orienting the peptide in a defined way. Subsequently,
when the negative E-stretch enters the proximity of the pore
constriction, the positive bias of the cis compartment exerts an
opposing force.46 A similar peptide was used by Asandei et al.
to study peptide−nanopore interactions at different pH values
and to show the differentiation between alanine and
tryptophan residues.47,48 The peptide essentially gets stalled

at an equilibrium position where the forces in both directions
cancel out. This tug-of-war mechanism gives rise to long read
lengths (>1 ms), enabling one to extensively probe a particular
region of the peptide until it is thermally disturbed and
translocated. Moreover, the pulling mechanism stretches the
peptide, allowing the analysis of a linearized molecule.49

Substantial evidence was found for the existence of such an
equilibrium position by tagging this model peptide with large
chemical moieties at various locations along the peptide.46

These previous experiments reported that the peptide is stalled
in the FraC nanopore at the position where amino acid in
position 11 (from the N-terminus) is closest to the pore
constriction. For PTM analysis, we therefore placed a serine in
position 11 and evaluated variants of the peptide containing
either phosphorylation or O-glycosylation in this position.
Measurements were performed using a wild type FraC

nanopore in a buffer containing 10 mM Tris, 1 mM EDTA,
and either 1 M NaCl or 0.8 M NaCl as specified at pH 7.5. If
necessary, all the required sample preparation steps previous to
the measurement can be done at physiological conditions, and
the salt concentration can be increased right before the
nanopore measurements. Peptides were added to the cis side
of the flow cell at concentrations between 100−300 nM
(Figure 1a). A negative bias of −90 mV was applied to the
trans compartment to avoid gating that is observed in FraC
under positive bias.

Figure 2. (a) Schematic representation of the measurements for the non-glycosylated peptides (left) and for an equimolar concentration mixture of
glycosylated and non-glycosylated peptides (right). (b) Scatter plot of relative blockade versus dwell time for the non-glycosylated peptide. (c)
Scatter plot of relative blockade versus dwell time for the mixture of glycosylated and non-glycosylated peptides. A second population with higher
relative blockade is visible as shown by the arrows. (d) Relative blockade histogram of the non-glycosylated peptide. (e) Relative blockade
histogram of the mixture of non-glycosylated and glycosylated peptide.
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Identification of Phosphorylated Peptides with a
FraC Nanopore. After the addition of peptides containing no
PTM modifications to the cis compartment, we observed well-
defined and consistent current blockades. Figure 1b shows a
scatter diagram of the relative current blockade versus the
dwell time observed for N = 449 translocation events, and the
histogram for the relative blockade. We define the relative
blockade as the current blockade (ΔI = Iblockade − Iopenpore)
divided by the open pore current (Iopenpore). For the control
peptide without PTMs, a relative blockade of 0.48 ± 0.01 was
observed with a mean translocation time of 1.6 ± 1.1 ms. Error
bars represent the standard deviation over at least three
independent experiments.
Subsequently, peptides containing a single phosphorylation

(i.e., a single PO3
2− group) in position 11 were added to the cis

side of the chamber at a same concentration, thus leading to a
one-to-one mixture of unmodified and PTMed peptides. As
shown in Figure 1c, this led to two clear populations with
comparable densities in the scatter plot of relative blockade
versus dwell time. This indicates that the phosphorylation
PTM can be clearly detected with the FraC nanopore. The
well-defined difference in current blockade is also apparent in
the histogram displayed in Figure 1c which shows two clearly
separated peaks. The relative blockade of the bottom
population (0.48 ± 0.02) corresponded to the unmodified
control peptide, whereas a larger relative blockade of 0.52 ±
0.01 was found for the phosphorylated peptide. This represents
an 8.7% increase compared to the control peptide.
Identification of Glycosylated Peptides with a FraC

Nanopore. We expanded our nanopore detection to the
analysis of the O-glycosylated peptide. O-glycosylated peptides
have the glycan group attached to the amino acid residue
through an oxygen group. O-glycans such as GlcNAc (N-
acetylglucosamine) occur naturally in serines and threonines
and are of growing importance in proteomics because of their
close connection to phosphorylation regulation which plays a
key role in several chronic diseases.
Here, we analyze a peptide containing an O-GlcNAc

glycosylation in position 11. GlcNAc is a small PTM
comprising a single sugar moiety with a total mass of 203
Da. Figure 2 shows the result of the nonglycosylated peptide as
well as that of a mixture containing the O-glycosylated peptide
together with the control peptide at equimolar concentrations.
In Figure 2c,e, two distinct populations are clearly discernible
in their relative blockade values, leading us to conclude that the
nanopore is able to distinguish peptides containing a O-
GlcNAc PTM from the unmodified peptide. Analysis of repeat
measurements show that the O-GlcNAc variant has an average
relative blockade of 0.52 ± 0.01. This represents an 8.3%
increase compared to the unmodified peptide.
We note that the increase in relative blockade observed by

the phosphorylated and glycosylated variants are almost
identical (8.7% versus 8.3%) despite their molecular weight
difference (80 Da for phosphorylation versus 203 Da for
glycosylation). We hypothesize that this relates to the negative
charge of the phosphoryl group.
Distinguishing Different PTM Modifications with a

FraC Nanopore. As observed in Figures 1 and 2, the
phosphorylated and glycosylated peptides cannot be mutually
differentiated based on the relative blockade as measured at 1
M NaCl because the increase in relative blockade caused by
the phosphoryl group (8.7%) and the O-GlcNAc group (8.3%)
is nearly identical under these measurements conditions. This

was also confirmed by measuring a mixture containing three
different peptides, the phosphorylated peptide, the O-
glycosylated peptide, and the control peptide (SI; Figure
S1), where only two populations were observed.
Despite the similarity in relative blockade observed for both

PTMs, we noted a difference between the phosphorylated and
glycosylated peptides in other translocation characteristics,
notably the translocation time (Figure 3). For the phosphory-

lated peptide, an average dwell time of 3.2 ± 2.1 ms is
observed, indicating an increase in translocation time
compared to the control peptide that has an average dwell
time of 1.6 ± 1.1 ms. For the glycosylated peptide, on the
other hand, a decrease in dwell time is observed leading to an
average dwell time of 0.4 ± 0.2 ms. We attribute the increase in
dwell time observed with the phosphorylated peptide to a
charge imbalance in the construct caused by the PTM. The
addition of a phosphoryl group with a net negative charge
shifts the force equilibrium brought about by the positive and
negative tail regions of peptide and as a result the dwell time
increases. We hypothesize that the decrease in dwell time for
the GlcNAc group is of entropic nature. Confining the O-
GlcNAc moiety into the pore constriction limits its degrees of
freedom. As a result, the equilibrium state of the peptide is less
energetically favorable for the glycosylated variant than for the
unmodified peptide. This increases the probability to thermally
disturb the force equilibrium, leading to shorter dwell times.
Although the average dwell time for the two PTMs is

significantly different, the dwell time of each population is
quite widely spread and therefore this characteristic is not ideal
for a proper real-time differentiation between the two PTM
modifications. Hence, we looked for other ways to differentiate
the two PTM variants. The relative blockades are nearly
identical in 1 M NaCl, but if the salt conditions were changed
the relative blockade of each modification would be altered to
a different degree. Unlike the O-GlcNAc group, which is
essentially uncharged, the phosphorylation contains two
negative charges at pH = 7.5. The ionic strength of our buffer
should therefore particularly affect the charge screening of the
phosphoryl group, altering its translocation characteristics.

Figure 3. Dwell time histograms for the unmodified peptide (top),
the glycosylated peptide (middle), and the phosphorylated peptide
(bottom).
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To test this, we measured a mixture containing the three
peptide variants (the two modified peptides and the control) in
equimolar concentrations in a buffer containing a lower salt
concentration of 0.8 M NaCl at pH 7.5. Measurements at
other salt concentrations such as 0.6 and 2 M NaCl were also
performed (example traces can be found in Figure S2). The
lowest concentration, 0.6 M, resulted in near-stalled trans-
locations, obstructing data acquisition. The higher concen-
trations, for example 2 M, gave rise to very fast translocations,
hampering the signal-to-noise ratio. As shown in Figure 4, at
0.8 M NaCl three different populations can be clearly observed
in the scatter plot and histogram. Importantly, these conditions
enable us to detect and differentiate the three different peptide
variants. The control peptide had a mean value of 0.502 ±
0.004; the phosphorylated peptide had a mean value of 0.526
± 0.002; and the glycosylated peptide had a mean value of
0.536 ± 0.003 (Figure S3). The results were confirmed by
three independent experiments containing the peptide mixture
(Figure S4) and by independent measurements of each PTM
(Figure S5). Example event traces can be found in Figure S6.
From the data, we can establish that at 0.8 M NaCl the
increase in relative blockade of the glycosylated peptide
compared to the control peptide remained largely unchanged
(7.6%), whereas for the phosphorylated peptide, an increase in

relative blockade of 4.8% compared to the control peptide is
observed at 0.8 M NaCl, which is reduced as compared to
8.7% at 1 M NaCl. The mean values of the different
populations are well-defined and separated from each other
by values equivalent to at least two times sigma (Figure S2 and
S3). We do not observe an overlap between the peptides
containing PTMs and the control peptide. The overlap
between the phosphorylated population and the glycosylated
population is equivalent to approximately 5% (Figures S2 and
S3).
We hypothesize that the lower increase in relative blockade

observed for the phosphoryl moiety at lower salt has the same
origin as the inverted current rectification previously observed
in FraC (Figure S7).49 Previous studies have reported that
nanopores with strong ion selectivity and a diameter
comparable to the Debye screening length exhibit a reversion
in current rectification.50−52 The exact mechanism is still a
matter of debate but it is speculated that it originates from the
distribution of ions in the pore vestibule and at the trans region
at the narrow tip of the pore. Our previous molecular dynamics
simulations support this hypothesis and show that an
accumulation of cations is observed at the cis opening of
FraC, while an accumulation of anions is observed at the trans
exit of the pore.46 In line with this reasoning, the presence of a

Figure 4. (a) Schematic representation of the measurement approach and (b) an example current trace obtained for a measurement on a mixture of
the three peptides: the unmodified control peptide, the phosphorylated peptide and the glycosylated peptide. Data are taken at 0.8 M NaCl with
pH 7.5. (c) Scatter plot of relative blockade vs dwell time and a relative blockade histogram of the mixture of the three peptides. Three different
current blockade levels are observed. The first peak has a mean value of 0.502 (sd = 0.004), the second peak has a mean value of 0.526 (sd =
0.002), and the third peak has a mean value of 0.536 (sd = 0.003).
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stronger negatively charged phosphoryl group in the FraC
constriction has an effect on this mechanism leading to an
increase in current and thus a decrease in relative blockade
compared to the 1 M NaCl case.
Discussion. In this work, we have shown that phosphor-

ylation and glycosylation post-translational modifications can
be detected using the wild type FraC nanopore. We use a
bipolar peptide that contains a stretch of negative charges at
the N-terminus and positive charges at the C-terminus. The
peptide is stalled upon translocating the nanopore, allowing us
to probe a particular region of the peptide with great
sensitivity.49 Upon placing a phosphorylation or a small O-
glycosylation group in this peptide, both PTM peptide variants
could be distinguished from the control peptide with an
unmodified serine residue. To the best of our knowledge, this
constitutes the first reported detection of a O-glycan PTM
using nanopores. O-glycans play a crucial role for protein
conformation, solubility, and stability but, compared to N-
glycans, their detection is challenging in mass spectrometry.10

The main reasons for the latter difficulties are the lack of a
consensus amino acid sequence where the PTM is present,
which hinders the determination of the PTM site, and the lack
of universal enzymes to release O-glycans from the protein
substrates. Nanopores thus present an attractive alternative for
O-glycosylation characterization.
Next to the change in relative blockade detected for the

PTM variants, we also observed changes in the translocation
time of the peptides containing PTMs. Longer dwell times
were observed for the phosphorylated peptide, presumably
because of the negative charges in the phosphoryl group, which
increase the forces in the peptide toward the cis compartment.
Shorter dwell times were observed for the O-GlcNAc variant,
which may be due to the entropic penalty associated with
confining the sugar moiety in the pore constriction.
Upon changing the NaCl salt concentration from 1 to 0.8 M,

an interesting effect was observed for the phosphorylation. A
reduced blockade was observed at lower salt concentration.
The result is counterintuitive, as one might expect an increase
in the size of the electrical double layer at lower salt and thus
an increase of the current blockade caused by the phosphoryl
group. We hypothesize that the observed result has the same
origin as the inversion of current rectification phenomena
observed in FraC, where an accumulation or depletion of ions
in the cis and trans opening of the pore has an important effect
on the pore conductance.49 The presence of an effectively
larger negative charge in the pore constriction generates an
increased current.
In conclusion, our results show, for the first time, nanopore-

based differentiation between phosphorylated and glycosylated
peptide variants in a label-free manner. These results bear
potential for PTM detection that is important for the study of
diseases such as cancer or diabetes, where the intricate
regulation of phosphorylation and glycosylation plays an
important role in the pathogenesis of the disease.
In future work, the proof-of-principle nanopore-based

detection of PTMs on peptides shown here may be expanded
to PTM detection in full-length proteins upon using an enzyme
or another mechanism to slow down the linear translocation of
a full-length protein through the nanopore. As proteins of
interest will likely be in a complex mixture containing other
proteins, antibody-based methods or chromatography might be
required to isolate particular proteins for efficient analysis.
PTM detection on proteins would allow the identification of

the variety of proteoforms in a sample, providing a radical
improvement to current proteomics. Present day proteomics
methods typically rely on approaches in which proteins are
digested and peptide fragments are analyzed with their PTMs,
which is inherently problematic because proteoforms cannot
be correctly identified from the fragmented information on
these analytes. Nanopore methods that sequentially read full-
length proteins could thus allow the sensitive detection of the
proteoforms present in a sample, bringing important improve-
ments for PTM-based biomarker detection and the correct
identification of proteoforms against the “protein inference
problem”. Our current results present a promising step into
this direction.

Materials and Methods. Peptide Design and Synthesis.
The peptides used in this work were the control peptide with
sequence EEEEEEEEEESGSGSGSKGSRRRRRRRRRR
(HPLC purity = 96.33%, MW = 3662.77 Da), the
phosphorylated peptide with sequence EEEEEEEEEES(p-
S)GSGSGSKGSRRRRRRRRRR (HPLC purity = 96.41%,
MW = 3743.07 Da), and the glycosylated peptide with
sequence EEEEEEEEEES(β-GlcNAc-S)GSGSGSKGCR-
RRRRRRRRR (HPLC purity = 99%, MW = 3865.38 Da).
The control and phosphorylated peptides were synthesized by
Biomatik Corporation (Cambridge, CA). The glycosylated
peptide was synthesized by Thermo Fisher Scientific. Synthesis
was performed using standard solid-phase methods and the
peptides were further purified using reverse-phase HPLC and
analyzed by mass spectrometry. Peptides were kept lyophilized
or, when necessary, aliquoted to a final concentration of 10
mg/mL at −20 °C.

Electrical Recording in Planar Lipid Membranes. Electrical
recording was performed using planar lipid membranes, as
described before.53,54 Briefly, a 25 μm thick Teflon film
(Goodfellow Corporation, Pennsylvania U.S.A.) containing an
orifice of approximately 70 μm width separates the cis and
trans compartments. To form the membranes, 10 μL of 5%
hexadecane in pentane was added to the Teflon film and the
pentane was allowed to evaporate. The reservoirs were filled
with buffer and 10 μl of 10 mg/mL 1,2-diphytanoyl-sn-glycero-
3-phosphocholine (DPhPC) in pentane. Membranes were
spontaneously formed using the Montal-Mueller method. Ag/
AgCl electrodes were placed in each compartment with the
ground electrode in the cis side. Wild type FraC oligomers
were added to the cis side of the chamber. Upon pore
insertion, the pore was characterized by measuring traces at
different voltages and taking an I−V curve. The substrate was
added to the cis side of the chamber and current recordings
were done at −90 mV.

Data Acquisition and Analysis. Nanopore recording was
collected using a patch-clamp amplifier (Axopatch 200B,
molecular devices, U.S.A.) at a filtering frequency of 100 kHz.
The data was digitized using an Axon Digidata 1550B digitizer
at a sampling frequency of 500 kHz. The signal was low-pass
filtered at 10 kHz and was processed using a Matlab script
(Transalyzer).55
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Winterhalter, M.; Nussberger, S. Protein Translocation through
Tom40: Kinetics of Peptide Release. Biophys. J. 2012, 102, 39−47.
(28) Ji, Z.; Wang, S.; Zhao, Z.; Haque, F.; Guo, P. Fingerprinting of
Peptides with a Large Channel of Bacteriophage Phi29 DNA
Packaging Motor. Small 2016, 12 (33), 4572−4578.
(29) Huang, G.; Voet, A.; Maglia, G. FraC nanopores with
adjustable diameter identify the mass of opposite-charge peptides
with 44 Da resolution. Nat. Commun. 2019, 10, 835.
(30) Chavis, A. E.; Brady, K. T.; Hatmaker, G. A.; Angevine, C. E.;
Kothalawala, N.; Dass, A.; Robertson, J. W. F.; Reiner, J. E. Single
Molecule Nanopore Spectrometry for Peptide Detection. ACS Sensors
2017, 2 (9), 1319−1328.
(31) Asandei, A.; Rossini, A. E.; Chinappi, M.; Park, Y.; Luchian, T.
Protein Nanopore-Based Discrimination between Selected Neutral
Amino Acids from Polypeptides. Langmuir 2017, 33, 14451−14459.
(32) Payet, L.; Martinho, M.; Pastoriza-Gallego, M.; Betton, J. M.;
Auvray, L.; Pelta, J.; Mathe,́ J. Thermal Unfolding of Proteins Probed
at the Single Molecule Level Using Nanopores. Anal. Chem. 2012, 84
(9), 4071−4076.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.9b03134
Nano Lett. 2019, 19, 7957−7964

7963

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b03134/suppl_file/nl9b03134_si_001.pdf
mailto:c.dekker@tudelf.nl
mailto:c.joo@tudelft.nl
http://orcid.org/0000-0003-2784-0811
http://orcid.org/0000-0001-6273-071X
http://orcid.org/0000-0003-2803-0335
http://dx.doi.org/10.1091/mbc.E14-10-1437
http://dx.doi.org/10.1021/acs.nanolett.9b03134


(33) Pastoriza-Gallego, M.; Rabah, L.; Gibrat, G.; Thiebot, B.; van
der Goot, F. G.; Auvray, L; Betton, J.-M.; Pelta, J. Dynamics of
Unfolded Protein Transport through an Aerolysin Pore. J. Am. Chem.
Soc. 2011, 133 (9), 2923−2931.
(34) Oukhaled, G.; Mathe,́ J.; Biance, A.-L.; Bacri, L.; Lairez, D.;
Pelta, J.; Auvray, L. Unfolding of Proteins and Long Transient
Conformations Detected by Single Nanopore Recording. Phys. Rev.
Lett. 2007, 98 (15), 158101.
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