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Proteins are the workhorses in all living cells. Thousands of dif-
ferent proteins sustain all functions of the cell, from copying 
DNA and catalysing basic metabolism to producing cellular 

motion. Protein analysis can therefore provide key information 
for the understanding of biological processes and disease (Box 1). 
Compared to the impressive technical advances in DNA sequenc-
ing, the development of highly sensitive, high-throughput protein 
sequencing techniques lags severely behind. The only methods 
currently available for protein sequencing are Edman degradation, 
mass spectrometry, or their combination1–3 (see Box 2).

The current gold standard for protein sequencing is mass spec-
trometry4–7. The technique, however, has fundamental drawbacks in 
terms of its limit of detection and dynamic range8. Human samples 
are extremely complex, comprising a wide range of protein con-
centrations. In human plasma, for example, the concentration of 
proteins can vary from few picograms per millilitre (interleukin 6) 
to few milligrams per millilitre (albumin)9,10. Therefore, an exceed-
ingly high dynamic range (~109) is necessary for comprehensive 
proteome analysis9,11. State-of-the-art mass spectrometers are lim-
ited to a dynamic range of ~104 to 105 (refs 9,11). Another drawback 
of the instrument is its detection limit, which hinders biomarker 
discovery and translates into the need for large amounts of sam-
ple. If we consider a protein that is present in a cell in a low copy-
number (less than 1,000 molecules per cell)12, millions of cells are 
required to reach the limit of detection of the instrument (0.1 to 10 
femtomole)13–15. Mass spectrometry is thus far away from compre-
hensive single-cell analysis.

The spectacular advances in DNA sequencing technology, 
where even single DNA molecules can be sequenced, have inspired 
dreams of novel technologies for protein sequencing. However, 
the search for such protein sequencing methods is not trivial due 
to the complex nature of proteins. Proteins are built from 20 dis-
tinctive amino acids, while DNA is comprised of only four dif-
ferent bases. Independent of the read-out method of choice, the 
detection of 20 distinguishable signals is a tremendous challenge. 
Moreover, DNA samples with low concentrations of analyte can 
be amplified using polymerases, whereas protein sequencing plat-
forms cannot benefit from such amplification since there is no 

polymerase chain reaction-like amplification method for proteins. 
Protein sequencing techniques that would read the exact sequence 
of individual proteins at the single-molecule level could bring a 
revolution to proteomics, providing the ultimate sensitivity for the 
detection of low-abundance proteins. Moreover, such a method 
would enable single-cell proteome studies with higher capabilities 
than current methods16–20.

In this Review, we present an overview of the exciting nascent 
field of single-molecule protein sequencing. Several approaches for 
protein sequencing at the single-molecule level have emerged in 
the past few years. These new ideas run from renovating Edman 
degradation and mass spectrometry, through repurposing single-
molecule DNA sequencing platforms for protein sequencing, to 
developing entirely new molecular devices. The proposed meth-
ods are based on single-molecule techniques such as nanopores, 
fluorescence and tunnelling currents across nanogaps (Fig. 1). We 
describe the schemes proposed so far and discuss their advantages 
and drawbacks. First experimental efforts and proof-of-principle 
experiments towards their realization are also discussed.

Protein fingerprinting using fluorescence
Fluorescence techniques have been central for the development 
of high-throughput DNA sequencing devices. In systems such as 
those of Illumina21, Pacific Biosciences22 and Helicos23, DNA is de 
novo sequenced by monitoring the incorporation of fluorescently 
labelled nucleotides during strand replication. The development of 
a de novo protein sequencing method based on fluorescence faces 
enormous challenges. Major constrains are the lack of organic fluo-
rophores for the detection of 20 different amino acids without sub-
stantial signal crosstalk, and the absence of a suitable chemistry to 
specifically label all 20 amino acids24.

Recently, simplified schemes, in which only a small subset 
of amino acids is fluorescently labelled and detected, have been 
proposed. If demonstrated, these could lead to the development 
of protein identification methods with single-molecule sensi-
tivity25,26. These approaches resemble optical mapping of DNA, 
where partial sequence information is sufficient to identify certain 
characteristics of a genome or to identify different pathogens27. 
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Similar to how optical mapping has served as a complementary 
lower-resolution technique to DNA sequencing, protein finger-
printing could constitute a complementary technique to de novo 
protein sequencing.

In 2015, Joo and colleagues proposed a fingerprinting scheme 
based on the detection of two types of amino acid25. In their 
approach, the cysteine (C) and lysine (K) residues of a protein 
are labelled and sequentially detected. This sequence of cysteines 
and lysines (or CK sequence) can then be used to identify the pro-
tein of interest using a protein database (Fig. 2b). To read the CK 
sequence, an unfoldase called ClpX is immobilized on a single-
molecule surface and used as a protein scanner. This molecular 
motor recognizes tagged polypeptides and unfolds them while 
translocating them through its internal cavity. If the enzyme is 
labelled with a donor fluorophore and the substrate contains accep-
tor dyes in its cysteines and lysines, fluorescence resonance energy 
transfer (FRET) occurs as each of these amino acids approaches the 
ClpX constriction, generating a CK read in a string of two different 
acceptor signals (Fig. 2a).

The feasibility of this CK fingerprinting approach was com-
putationally assessed using a human protein database containing 
~20,000 protein entries25. CK sequences were generated computa-
tionally taking into consideration the most common errors expected 
during experimental readings. These generated CK sequences were 
compared to the database, and the probability of retrieving an origi-
nal sequence was calculated based on the accuracy of the matches. 
Considering a 10% error level in the readings, approximately half of 
the protein sequences could be correctly retrieved. When additional 
parameters, such as the distance between cysteines and lysines, were 
considered (Fig. 2b, CK-dist read), the method could accurately 
identify a major percentage (>​70–80%) of proteins even when high 
error rates (20–30%) were considered (Fig. 2c).

A proof of concept was experimentally demonstrated by Joo et 
al. this year28. Using a donor-labelled ClpP (the proteolytic chamber 
that binds ClpX), the authors sequentially read out FRET signals 
from acceptor-labelled substrates. They could fingerprint 29-, 40-, 
51-amino acid long peptides, and a monomeric (119 amino acids) 
and a dimeric (210 amino acids) titin protein. The repurposed 
ClpXP showed a constant translocation speed and unidirectional-
ity, features that are suitable for reliable fingerprinting. Note that 
a similar fingerprinting system was proposed and experimentally 
demonstrated using a labelled ribosome to monitor the production 
of specific proteins inside the cell as a way to gain information on 
protein expression location and levels29,30.

A different method is pursued by Marcotte and colleagues, 
in which peptide fingerprinting is accomplished using a single-
molecule version of Edman degradation26. Unlike conventional 
Edman degradation methods, the single-molecule detection allows 
for analysis of mixed populations. In this approach, proteins are 
digested into peptide fragments (~10–30 amino acids long) and 
specific amino acids are labelled with fluorophores of distinguish-
able colours. The labelled peptides are immobilized on a surface, 
and fluorescence microscopy is used to monitor each cycle of 
Edman degradation at single-molecule resolution (Fig. 2d). Each 
degradation cycle removes the N-terminal amino acid of the pep-
tide, so that the sequence of labelled amino acids can be detected by 
monitoring the change of the fluorescence intensity in each cycle. 
The decrease in fluorescence after a degradation cycle indicates that 
a labelled amino acid has been cleaved. The cleaved amino acid can 
be identified using spectral information (Fig. 2e).

Computer simulations were used to investigate the probabil-
ity of detecting proteins from the identification of a unique pep-
tide sequence using Marcotte’s fingerprinting method26. Different 
immobilization, labelling and cleavage strategies were evaluated, 
and it was determined that at least four different labelled amino 
acids are required to identify 98% of the human proteome24.

The fingerprinting schemes proposed here take advantage of 
the fact that proteins can be identified using incomplete sequence 
information. The approach proposed by Joo and colleagues reads 
full-length proteins and therefore requires simple two-colour 
labelling of substrates. The main limitation of this approach is the 
requirement of a recognition tag in the N- or C-terminus of the sub-
strate for unfoldase recognition. It seems possible to devise ligation 
schemes to add such a tag to all proteins in a mixture or to engineer 
the enzyme to allow recognition of any protein coming from cellular 
preparations and other biological samples. Marcotte’s approach to 
fingerprinting benefits from an entirely chemical approach, which 
can be beneficial for commercialization purposes. However, the 
harsh conditions required for the Edman reaction demands for a 
careful selection of fluorophores, and a set of adaptations to a con-
ventional total internal reflection fluorescence microscope31. A dis-
advantage of this method is that each cycle of Edman degradation 
can take approximately 45 min, making the sequencing process 
extremely slow. An alternative approach to Edman degradation is 
currently being explored in which an enzyme has been designed 
that is capable of cleaving off amino acids, one at the time, from 
the protein N-terminal32. The use of this enzyme, called Edmanase, 
may allow Edman degradation to proceed under physiological con-
ditions, and potentially at a faster pace.

Fluorescence fingerprinting may play a crucial role in the devel-
opment of fast techniques for parallel protein identification and 
analysis. Millions to thousands of millions of single molecules can 
be immobilized and monitored together, opening the door to high-
throughput assays. Single-molecule protein identification using flu-
orescence could complement de novo protein sequencing methods, 
improving the sensitivity of current bulk identification techniques 
such as antibody microarrays or mass-spectrometry protein identi-
fication based on peptide fingerprints. The improved sensitivity of 

Box 1 | Genomic, transcriptomic and proteomic analysis in 
diagnostics

When the human genome project was realized in 2003, sequenc-
ing an entire human genome would cost approximately US$50 
million and would require 100 machines working for ~2,500 h. 
Today, thanks to the tremendous advances in DNA sequenc-
ing technologies, a human genome can be sequenced for only 
US$1,000 using one machine working for ~72 h (refs 100,101). 
DNA sequencing is thus becoming a routine technique in clin-
ics, allowing the collection of genetic information from patients 
at reasonable time and cost.

The challenge ahead is the interpretation of the data gathered 
from DNA sequencing with respect to the health condition of 
patients. A large gap resides between genotype and phenotype. 
Transcriptomics studies are often used as a first bridge, which 
provides information about which genes are actively being 
expressed. However, the gap still persists as mRNAs levels do 
not simply correlate to protein levels due to factors such as the 
variability in translational efficiency of different mRNAs, and the 
difference between mRNA and protein lifetimes102. Moreover, 
protein post-translational modifications further influence the 
function and structure of proteins.

Proteome analysis is therefore key to understand biological 
processes and their dynamic nature103,104. After all, proteins 
dictate most biological functions and are directly related to the 
phenotype of a cell. So, while genomics offers a quick glimpse, 
much like looking at the menu in a restaurant, proteomics brings 
you inside the heart of the kitchen, to closely examine what the 
food looks like.
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Box 2 | Current protein sequencing methods

Edman degradation. Invented by Pehr Edman in 1950, Edman 
degradation allows the ordered identification of the amino acid 
sequence in a protein from the N- to the C-terminus105. It con-
sists of cyclic chemical reactions that label, cleave and identify the 
amino acid at the terminus of a protein, one at the time (see fig-
ure below). In the first step of the reaction, the Edman reagent 
(phenylisothiocyanate, PITC) reacts with the amino group at the 
N-terminus of the protein under mild basic buffer conditions. The 

modified N-terminal amino acid is removed as a thiazolinone de-
rivative under acidic conditions. This derivative is then identified 
using chromatography.

Edman degradation is a useful tool for sequencing, but it is 
limited to the analysis of purified peptides that are shorter than 
~50 amino acids. It cannot be used for the analysis of complex 
protein mixtures, such as those present in most biological samples. 
Additionally, each degradation cycle can take approximately 45 
min (ref. 106), making the process extremely time-consuming. 
N-terminus modifications can also interfere with the process. For 
example, if the N-terminus of the peptide is acetylated (a common 
post-translational modification), the reaction cannot take place, 
prohibiting protein sequencing.

Mass spectrometry. Since the 1980s, with the discovery of new 
ionization techniques (matrix-assisted laser desorption/ionization 
and electron-spray ionization), mass spectrometry has evolved 
into an important analytical tool for the life sciences5. For deep 
protein analysis, the introduction of shotgun proteomics marked 
an important step for the study of samples containing protein 
mixtures107. In a typical experiment, proteins are digested into 
peptides and separated according to hydrophobicity and charge 
using chromatography (see figure below). As peptides elute from 
the column, they are ionized and analysed according to their 
mass-to-charge ratio using tandem mass spectrometry.

these methods brings important advantages for applications such as 
biomarker detection for disease diagnosis.

Protein sequencing using tunnelling currents
The idea of using tunnelling currents to measure single molecules 
was first conceived in the 1970s33. Tunnelling currents are measured 
between two metal electrodes separated by a gap that ranges from 
a few angstroms to a few nanometres (Fig. 3a,d). When individual 
molecules pass through the nanoscopic gap, a change in the tun-
nelling current is measured. This current modulation can be used 
to determine which molecule is transiently residing in the gap in 
real time. With the invention of the scanning tunnelling micro-
scope (STM) in the 1980s, the possibility to realize this idea became 
clear and led to the development of a new field named molecular 

electronics34–36. In recent years, this technique has evolved to study 
a variety of biomolecules aiming towards DNA and RNA sequenc-
ing37–41 (for a detailed review of these developments see refs 39,40). In 
a similar way, interest has emerged in the study of amino acids and 
peptides in an urge towards protein sequencing. In this section, we 
present a review of these developments.

In 2014, Lindsay et al. reported the first measurements of amino 
acids and short peptides using tunnelling currents42,43. They dem-
onstrated the sensitivity of their approach by analysing three sets 
of amino acids with minor structural differences: glycine ver-
sus its methylated form sarcosine, the enantiomers of asparagine  
(L- versus D-asparagine), and the isobaric amino acids leucine 
versus isoleucine. Their experimental set-up consisted of two pal-
ladium electrodes, separated by a gap of 2 nm. The electrodes were 
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functionalized with a recognition molecule (4(5)-(2-mercaptoethyl)-
1H-imidazole-2-carboxamide), which was covalently bound to the 
electrodes. The recognition molecule interacted temporarily with 
the analyte to orient the molecule and thus provided a better-
defined current path (Fig. 3a). When amino acids were introduced, 
the transient interactions between each amino acid and the recogni-
tion molecule were detected as a train of current spikes (Fig. 3b). 
Using two-dimensional maps of the current amplitude and the spike 
shape, the amino acids analysed in each set could be discriminated 
with an accuracy of 80% or higher (Fig. 3c).

A subsequent study was reported by Kawai and colleagues in 
which all 20 amino acids and phosphotyrosine were tested using 
tunnelling currents with a different experimental set-up44. In their 
study, smaller gaps of 0.70 nm and 0.55 nm were created using gold 
break junctions. The small size of the gap allowed the detection of 
amino acids without a recognition molecule (Fig. 3d). The 0.70-nm 
gaps produced detectable signals for eight (Y, F, W, H, P, E, D, I) 
out of the 20 different amino acids, while smaller gaps of 0.55 nm 
produced signals for nine (P, H, E, D, I, K, C, L, M) amino acids. In 
total, 12 out of the 20 amino acids could be recognized; the rest did 
not produce a detectable signal. When one of the detectable amino 
acids was introduced in the measuring set-up, peaks in the current 
trace were observed, indicating the transient presence of an indi-
vidual molecule between the electrodes (Fig. 3e). The amplitude 
and duration of each peak was used to characterize each amino 
acid as shown in the scatter diagram in Fig. 3f. Seven amino acids 
showed distinctive signals and show potential for their differentia-
tion in complex mixtures; the remaining five produced indistin-
guishable signals. The detection of post-translational modifications 
was also demonstrated using 0.70-nm gaps. Tyrosine and phospho-
tyrosine produced distinctive signals, and mixtures of them yielded 
two populations in the amplitude histograms. Last, using the same 
approach, short peptides containing tyrosine and phosphotyrosine 
could be distinguished.

The recognition tunnelling approach used by Lindsay and col-
leagues shows the remarkable sensitivity of quantum tunnelling 
currents. This technique can discriminate isomers and molecules 
with minor structural differences that are indistinguishable by other 
techniques such as mass spectrometry. The downside of this method 

is the non-trivial complexity of the data. Each molecule can orient 
in many different ways within the junction, and exhibits significant 
translational and rotational fluctuations, leading to considerably 
different current signals. Therefore, machine-learning algorithms 
may be necessary to distinguish each molecule, considering the 
multiple conformations that can be observed.

The study of Kawai and co-workers presented a systematic char-
acterization of different amino acids and short peptides. Out of the 
20 amino acids studied, 7 amino acids generated distinguishable 
signals. This represents a promising step towards amino acid dis-
crimination for protein sequencing. Arrays containing junctions of 
different sizes might increase the number of amino acids that are 
detectable and increase the possibility to distinguish amino acids 
in a mixture. Technical improvements in the experimental set-ups 
and fabrication processes would facilitate this task. For example, it 
has recently been shown that extra coatings on the nanoelectrodes 
could bring improvements in terms of the signal-to-noise ratio and 
bandwidth of the measurements45,46.

To make this proof-of-concept into a sequencing tool, measure-
ments of tunnelling currents should be coupled with a mechanism 
that threads a polypeptide through the gap in a controlled way. An 
exopeptidase or other molecular motor could be adapted to trans-
locate the polypeptide through such an electrode gap. Alternatively, 
electrophoresis, electro-osmosis or a pressure difference could be 
used as a driving mechanism for molecules if the tunnelling device 
is coupled to a nanopore. Several groups have reported first experi-
mental efforts in this direction47–50.

Protein sequencing using nanopores
In 2014, Oxford Nanopore Technologies announced the release of 
the first single-molecule DNA sequencing device based on nano-
pores51–54. These pocket-sized devices are revolutionizing DNA 
sequencing by allowing extremely long reads and in situ detec-
tion at remote laboratories (even in outer space)51,55. In a nanopore 
experiment, an insulating membrane containing a nanometre-
sized pore is placed between two electrolyte-filled compartments. 
When a voltage is applied across the membrane, an ionic current 
flows through the nanopore. As individual molecules translocate 
through the pore, a modulation in ionic currents is observed, 
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which provides structural information about the molecule of inter-
est56–58. Using this principle, biopolymers can be sequenced as each 
individual component of the chain sequentially transverses the 
nanopore constriction.

Nanopores have proven their potential for DNA sequenc-
ing54,59. Exploiting nanopores for single-molecule protein 
sequencing is the next frontier. This is by no means an easy task, 
as numerous challenges need to be tackled to sequence a protein 
with a nanopore. First, amino acid residues vary widely in charge 
distribution, unlike DNA that is essentially uniformly charged. 
Electrophoresis-driven unidirectional translocation of poly-
peptides through nanopores thus cannot be simply employed. 
Second, most proteins are folded in their native state. Disruption 
of their secondary and tertiary structure is necessary to thread 
them through a nanopore. Third, protein sequencing requires dis-
tinction of 20 different amino acids, a fivefold larger number than 
the four bases in DNA sequencing.

First translocations of polypeptides through nanopores were 
performed using peptides of only 20 to 30 amino acids60–64. Short 
peptides lack stable tertiary structure and can translocate without 
the need of denaturing agents. In these studies, peptides containing  

specific motifs such as β​-hairpins, α​-helices or collagen-like helices 
were analysed using alpha-haemolysin and aerolysin nanopores. 
This research elucidated important aspects about the kinetics of 
polypeptide translocation and emphasized the crucial role of pep-
tide–nanopore interactions during the passage of the molecule. In 
particular, the detailed work presented by Bayley et al. on heli-
cal peptides containing the (AAKAA)n sequence provided key 
insights into the process of protein capture and partitioning into 
the nanopore62.

While the translocation of peptides continues to be a valuable 
model system to understand basic steps in the complex process of 
protein translocation65,66, the final end of a nanopore-based protein 
sequencer is to read entire proteins, which requires protein dena-
turation. Multiple chemical and physical methods have been pro-
posed for protein unfolding in nanopore analysis. Several groups 
have shown the successful unfolding and translocation of proteins 
through solid-state nanopores using strong denaturants such as 
urea, sodium dodecyl sulphate (SDS) or guanidine hydrochloride 
(GdnHCl)67–69. Translocation of proteins through biological nano-
pores using denaturants has also been achieved70–72. In this context, 
solid-state nanopores have an advantage over biological nanopores, 
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displaying higher stability when exposed to extreme buffer condi-
tions (8 M urea, 6 M GdnHCl or 1% SDS).

Biological channels are more susceptible to denaturing condi-
tions than solid-state devices, but can remarkably withstand con-
centrations of up to 4 M urea and 1.5 M GdnHCl (ref. 73). These 
concentrations are sufficient to break the structure of some protein 
substrates and allow translocation. For example, pioneering work 
(Fig. 4a,b), which showed protein unfolding and translocation 
through α​-haemolysin for the first time, was done using the maltose 
binding protein, which could be unfolded at low denaturant con-
centrations (0.8 M GdnHCl)70.

Physical methods such as high temperature have been used to 
unfold proteins in both solid-state and biological nanopores74,75. 
Pelta and colleagues studied the thermal denaturation of a maltose 
binding protein variant in a temperature range from 20 °C to 70 °C  
in both α​-haemolysin and aerolysin nanopores75. Temperature 
facilitates protein unfolding, but speeds up translocation dynamics, 
which makes sequencing more challenging. In a similar way, two 
research groups have shown that high voltages help stretch proteins 
during the movement through solid-state nanopores76–78. These 
approaches are not compatible with biological nanopores due to the 
electroporation of the lipid bilayer at high voltages (~0.4 V), and 
also cause an increase in translocation speed.

A major roadblock for the development of a protein sequencer 
with nanopores is the non-uniform charge distribution of amino 
acid residues. Unlike DNA that is uniformly charged and moves 
through a nanopore by electrophoretic forces, proteins carry differ-
ent local charges. It is therefore not well-defined if electrophoretic or 
electro-osmotic forces on the protein dominate the transport (unless 
it is set by the electro-osmotic force due to ions at the nanopore 
surface)79,80. One way to address this issue is to use SDS as a dena-
turant. SDS not only unfolds proteins, but also wraps them around 

with a homogeneous negative charge given by the sulphate groups 
in the head of the detergent. SDS has been used to enforce proteins 
through pores with sub-nanometre diameters, hinting at the poten-
tial of using a nanopore for differentiating individual amino acids 
(Fig. 4c)81,82. A more comprehensive understanding of the effect of 
SDS on protein unfolding and translocation was presented by our 
group69. Experiments showed that SDS could unfold stably folded 
proteins such as titin and β​-amylase (Fig. 4d). Additionally, a con-
sistent direction of translocation was induced by the electrophoretic 
force, thanks to the negative charge conveyed by SDS.

An alternative approach to control the direction of translocation 
is to attach an oligonucleotide strand to the N- or C-terminus of a 
protein. The negative charge carried by this lead sequence drags the 
polypeptide in the direction of the electrophoretic force83–87. This 
principle was first used by Bayley and colleagues to study the trans-
location of thioredoxin through α​-haemolysin83,84. In their work, a 
30-mer oligonucleotide was attached to the C-terminus of the protein 
and upon adding the substrate to the cis compartment, a repetitive 
pattern with multiple current levels was observed, which corre-
sponded to the capture of the DNA tag, the local unfolding of the 
C-terminus and the unfolding of the remaining of the protein (Fig. 5a).  
The partially unfolded intermediate in which the C-terminus of 
the protein was locally unfolded and translocated through the con-
striction of the nanopore was further used to discriminate between 
unphosphorylated, monophosphorylated and diphosphorylated pro-
teins85. Other groups have also recently used this approach. Lindsay 
and colleagues developed a simple and effective click chemistry to 
facilitate the tagging reaction, while Pelta and colleagues used a DNA 
lead in a protein to present a direct proof of protein translocation 
using amplification by polymerase chain reaction86,87.

In all the studies presented this far, the translocation of pro-
teins occurs at timescales faster than 1 ms, which is too fast for 
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sequencing purposes. Indeed, single-protein translocations charac-
teristically occur very fast88. Control of the translocation speed will 
be necessary to guarantee ample time for the accurate reading of 
different amino acids by a nanopore.

The controlled and unidirectional movement of DNA through 
a nanopore using helicases or polymerases marked a breakthrough 
in the development of a nanopore-based DNA sequencer. Akeson 
and colleagues proposed a similar approach for proteins89,90. In their 
work, a motor enzyme, ClpX, unfolds and pulls the polypeptide 
chain in a controlled manner through α​-haemolysin. ClpX trans-
locates proteins at a speed slow enough for sequencing (80 amino 
acids per second), with defined step-sizes, and it generates a strong 
enough force (~20 pN) to unfold proteins91. In their experimental 
scheme (Fig. 5b) a lipid bilayer containing α​-haemolysin separates 
two compartments. The cis side contains a protein known as Smt3, 
which is modified with a 65-amino acid negatively charged exten-
sion and an ssrA tag. The ssrA tag is necessary for ClpX recognition 
and the 65-amino acid extension is used as an unstructured anchor 
that orients the protein and allows the ssrA tag to be exposed to 
the trans side, where ClpX is added. Time traces showed the pro-
cess of substrate capture and translocation by ClpX. In a follow-up 
study90, a machine-learning algorithm with three parameters (dwell 
time, average current amplitude and standard deviation of the cur-
rent amplitude) was used to distinguish different domains as well as 
variants of those domains such as mutations or truncations.

This approach overcomes two critical requirements for protein 
sequencing using nanopores: protein unfolding and controlled 
translocation of the substrate. The main drawback of this method 

is the need to add a polypeptide extension in the substrate. This 
could, however, be overcome by chemically attaching a polypep-
tide to the N-terminus of proteins. The high level of noise in the 
signal also needs to be improved. Other approaches have been pro-
posed, but lack experimental proof92–95. The use of a double pore 
system in which two nanopores are placed in series has been pro-
posed92. As the polypeptide transverses the first pore, it is cleaved 
by an exopeptidase, and the amino acids released by the enzyme 
are then analysed with a second nanopore. The use of perpen-
dicular nanochannels in which a protein is stretched in the lon-
gitudinal direction, while ionic current is recorded transversally, 
has also been proposed93, as has the use of graphene to control 
polypeptide translocation. Graphene and other two-dimensional 
materials are proposed as attractive nanopore membranes since 
they can be atomically thin, thereby improving the spatial resolu-
tion required to detect individual amino acids49. Using molecular 
dynamics simulations, it was shown that proteins and peptides 
collapsed on top of a graphene membrane by the surface absorp-
tion of amino acids, leading to a slow stepwise motion of amino 
acids into a nanopore94.

There is also a noticeable attempt of repurposing nanopores for 
improving mass spectrometry. The use of solid-state nanopores to 
create a renewed version of a mass spectrometer, in which the elec-
trospray ionization, conventionally done with micrometre-sized 
nozzles, is initiated from a nanopore has been proposed. This could 
potentially allow proteins to be sequenced if they are fragmented 
as they pass through the nanopore and individual amino acids are 
sequentially ionized and detected95. For a more detailed description 
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of efforts in improving the sensitivity of mass spectrometry, we refer 
to other reviews14,96.

In summary, great advances have been presented with the nano-
pore approach towards sequencing peptides and proteins. It is an 
extremely active field of research, and therefore significant advances 
are anticipated for the development of a protein sequencer in the 
coming years. An advantage that a nanopore sequencer could pro-
vide is the possibility to perform long reads. Traditional sequenc-
ing methods such as Edman degradation and mass spectrometry 
rely on the digestion of proteins into short peptides, but nanopore 
devices would allow sequencing of full-length proteins. A major 

challenge is the control of the polypeptide translocation speed. 
Different approaches are being explored at the moment, and it is 
very likely that enzyme-assisted translocations will command this 
step, as was the case for DNA sequencing. Exploring a pool of unfol-
dases beyond ClpX will be a critical step to accomplish this aim.

Outlook
The human genome project opened the door to exciting years of 
genomic research. The coming years will see significant progress in 
other omics, especially proteomics. In this area, the development of 
single-molecule approaches will be key for achieving the sensitivity 
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Table 1 | Summary of single-molecule protein sequencing approaches

Method Read length Potential for de 
novo sequencing

Labelling 
required

Proof of concept

Fluorescence FRET scanning using ClpX Full length No Yes Computational (ref. 25)

Peptide analysis (ref. 28)

Edman degradation A few amino acids No Yes Computational (ref. 26)

Tunnelling current Recognition tunnelling Full length if coupled 
with a nanopore or 
enzyme

Yes No Single-molecule measurements 
(ref. 43)

Sub-nanometre break junctions Full length if coupled 
with a nanopore or 
enzyme

Yes No Single-molecule measurements 
(ref. 44)

Nanopore Solid-state nanopore Full length Yes No Single-molecule measurements 
(refs 67–69,81)

Graphene nanopore Full length Yes No Computational (ref. 94)

Biological nanopore Full length Yes No Single-molecule measurements 
(refs 83,84)

Biological nanopore coupled with 
an enzyme

Full length Yes No Single-molecule measurements 
showing controlled translocation 
(refs 89,90)
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and dynamic range required for protein analysis. Colossal efforts 
are on-going in the fields of single-molecule fluorescence, tun-
nelling currents and nanopores. In this Review, we presented the 
main approaches proposed up to now for single-molecule protein 
sequencing, with their strengths and limitations. Table 1 summa-
rizes the different schemes presented, taking into consideration 
relevant criteria for the development of a protein sequencer, such 
as read length, and the possibility to perform de novo sequencing.

We anticipate that first single-molecule protein identification 
systems may appear as soon as within five years. First systems will 
most probably rely on a fingerprinting scheme such as those pro-
posed by Marcotte et al. and Joo et al. Marcotte’s approach has the 
advantage of relying entirely on chemical reactions, which could 
lead to a robust device for in situ analysis. Major disadvantages of 
this approach are its slow speed, and the fact that only short pep-
tides can be analysed. Alternatively, the scheme proposed by Joo et 
al. can be used for the analysis of full-length proteins, but on the 
down side, unfoldase engineering or substrate pre-processing need 
to be worked out for substrate recognition. Both methods need 
to overcome the challenge of reading multiple fluorophores with 
minimal error.

Nanopore research is moving fast in the direction of protein analy-
sis and protein sequencing. A nanopore-based protein sequencer has 
the potential to be commercialized in the next decade. The main 
challenges revolve around the controlled translocation of proteins 
through the nanopore and the read-out. Akeson’s approach, in which 
a ClpX enzyme was used to translocate a polypeptide through an  
α​-haemolysin nanopore, is currently the only system in which a 
protein is unfolded and transported in a controlled way through the 
nanopore. The large levels of noise observed in their signals, however, 
obstructed the identification of specific amino acids. As has become 
clear from high-resolution DNA sequencing51,97, alternative configu-
rations schemes and possibly different enzymes should be explored.

A remaining question is whether the measurement of ionic cur-
rents will provide the sufficient resolution for the identification of 
20 amino acids using nanopores. The experimental results from 
Lindsay and Kawai indicate that tunnelling currents are extremely 
sensitive, and can differentiate molecules with minor structural 
differences. Thereby, the integration of a nanopore system for 
controlled transport with the sensitive measurement of tunnelling 
currents is an attractive alternative that would potentially allow 
single-molecule de novo protein sequencing.

A major aim of a single-molecule protein sequencer would be the 
development of a tool for single-cell analysis. Current attempts to 
single-cell proteomics16–19, such as mass cytometry20, rely on labelled 
antibodies. The reduced availability of highly specific antibodies 
and distinguishable labels limits these techniques to the detection 
of 10 to 40 proteins per cell, a minute fraction of the proteome. 
Single-molecule detection methods will not require such a prepa-
ratory step, and could, in principle, detect thousands of proteins 
from individual cells. A critical aspect that needs to be resolved is 
the manipulation and extraction of proteins from single cells with-
out substantial losses or biases17. Recent advances in microfluidic 
devices, where proteins from single cells have been extracted and 
labelled on chip12, show first steps towards this goal.

The realization of a single-molecule protein sequencer is techni-
cally very challenging. If realized, however, it would revolutionize 
proteomics research by facilitating the identification of low abun-
dance proteins and achievement of true single-cell proteomics. Low 
abundance proteins are crucial in biomedical research as they allow 
the identification of disease-specific biomarkers98. Moreover, sen-
sitivity from single-molecule detectors could allow access to the 
so-called human dark proteome. The dark proteome comprises 
approximately 3,000 human proteins that have never been directly 
identified, despite evidence of their existence in genetic or transcrip-
tional information99. Besides protein identification, the detection  

of low abundance proteins can be beneficial for the study of post-
translational modifications, reducing the need of complex enrich-
ment processes. Finally, the possibility to perform single-cell 
proteomic analysis opens the possibility for exciting proteomics 
research, allowing scientists to study the change in protein expres-
sion of individual cells under specific stimuli.
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