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SUMMARY

The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-
dependent motor mechanism remains unclear but likely involves steps associated with large
conformational changes within the ~50 nm protein complex. Here, using magnetic tweezers, we resolve
single steps in loop extrusion by individual yeast condensins. Step sizes range between 20-45 nm at forces
of 1.0-0.2 pN, respectively, comparable to the complex size. The large steps show that condensin reels in
DNA in very sizeable amounts, up to ~600 bp per extrusion step, consistent with the non-stretched DNA
polymer at these low forces. Using ATP-binding-impaired and ATP-hydrolysis-deficient mutants, we find
that ATP binding is the primary step-generating stage underlying DNA loop extrusion. We discuss the
findings in terms of a scrunching model where a stepwise DNA loop extrusion is generated by an ATP-

binding-induced engagement of the hinge and the globular domain of the SMC complex.
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INTRODUCTION

Structural maintenance of chromosome (SMC) protein complexes, such as condensin, cohesin, and
SMC5/6, are vital in many genetic processes, including mitotic chromosome organization and segregation,
regulation of sister chromatid pairing, DNA damage repair and replication, and regulation of gene
expression (Hirano, 2016; Jeppsson et al., 2014; Nasmyth and Haering, 2005; Rowley and Corces, 2018;
Ruiten et al., 2018; Uhlmann, 2016). Emerging evidence points to SMC complexes as universal DNA-
extrusion enzymes that play a key role in the macroscale chromosome organization. Chromosome-
conformation-capture studies (Hi-C and variants;(Gibcus et al., 2018; Naumova et al., 2013) and 3D
polymer simulations showed that loop extrusion by condensin can efficiently generate compaction of
chromatin fibers (Alipour and Marko, 2012; Goloborodko et al., 2016). Recent in vitro single-molecule
fluorescence imaging (Ganiji et al., 2018; Golfier et al., 2020; Kim et al., 2020, 2019; Kong et al., 2020;
Terakawa et al., 2017) demonstrated that SMC complexes extrude DNA into large loops by an ATP-
dependent mechanochemical motor activity. These studies showed that the condensin complex
constitutes a motor that reels in and extrudes DNA at a very high speed (~600 bp/s) while consuming only
very low amounts of ATP (~2 ATP/s) (Ganji et al., 2018), implying that extrusion proceeds in large steps of
the order of the ~50 nm condensin size. However, the underlying mechanism of DNA extrusion that leads
to the generation of large DNA loops in a step-wise fashion remains to be elucidated.

Structural studies of condensin have suggested various sizeable conformational changes of the
protein complex that are potentially associated with the loop-extrusion stepping (Hassler et al., 2018; Lee
et al., 2020; Ryu et al., 2020; Yoshimura et al., 2002). Condensin consists of a ring formed by two 50 nm
long antiparallel coiled-coil SMC arms that are mutually engaged by a hinge domain, and, at the opposite
site of the ring, a globular domain consisting of two ATPase heads of the SMCs, the Brn1 kleisin, and two
HEAT-repeat domains, Ycs4 and Ycgl (Fig. S1). A recent AFM study (Ryu et al.,, 2020) showed large
reversible hinge-to-globular domain motions of 22 + 13 nm. Regarding the mechanochemical ATP
hydrolysis cycle that drives the DNA extrusion, this recent AFM study of yeast condensin as well as a cryo-
EM study of human cohesin demonstrated that ATP binding induces large conformational changes of the
hinge domain (Higashi et al., 2020; Ryu et al., 2020; Shi et al., 2020). In attempts to measure condensin-
mediated DNA extrusion step sizes, previous single-molecule magnetic tweezers (MT) studies showed
significantly varying values, ranging from ~80 nm for Xenopus condensin | (Strick et al., 2004) to ~200 nm
for yeast condensin (Eeftens et al., 2017) — significantly larger than the 50 nm condensin complex size that

one intuitively would expect. The large reported step sizes are potentially affected by the intrinsically large
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thermal motion of the DNA tethers, which renders it very challenging to perform high-resolution step-size
measurements at the very low DNA stretching forces where condensin is active (< 1 pN; (Eeftens et al.,
2017; Ganji et al., 2018). To elucidate the origin of the large discrepancies in previously reported step sizes,
which bears direct relevance for the modelling of the loop-extrusion process, an accurate step size
measurement of condensin-induced DNA loop extrusion is much needed.

In this study, we aimed to accurately measure single DNA-loop-extrusion step sizes as well as
identify the step-generating process in the ATP mechanochemical cycle using high-throughput single-
molecule magnetic tweezers (MT). We optimized the MT using a relatively short 1.5 kbp DNA construct to
resolve small steps with a resolution down to ~10 nm even at the sub-picoNewton forces where condensin
is active. We found that individual condensins do extrude loops of DNA in a step-wise fashion, with a force-
dependent step size ranging from 17 £+ 14 to 45 £ 38 nm (median £ SD) at 1.0 - 0.2 pN DNA stretching
forces, respectively. Notably, these step sizes do not correspond to 50-135 base pair steps along DNA as
one might assume, but involve the reeling in of DNA at much larger amounts of up to ~600 base pairs per
step, consistent with the non-stretched behavior of the DNA polymer at these low forces. Importantly, the
use of an ATP-binding-deficient Q-loop mutant and especially an ATP-hydrolysis-deficient EQ mutant
unequivocally demonstrated that ATP binding is the primary step-generating process during DNA
extrusion, while ATP hydrolysis enables the motor to perform subsequent DNA extrusion step cycles in a

consecutive fashion.

RESULTS

Magnetic tweezers resolve single DNA extrusion steps of individual condensins

In order to resolve single DNA-loop-extrusion steps that are induced by an individual S. cerevisiae
condensin holocomplex in real-time, we employed a single-molecule assay based on MT (De Vlaminck et
al., 2011). MT are a particular advantageous technique because it allows to observe real-time DNA length
changes at the single-molecule level at a high spatiotemporal resolution (~20 ms and ~2 nm, dependent
on force) (Van Loenhout et al.,, 2012). Notably, at the very low < 1 pN DNA stretching forces where
condensin is active, it is very challenging to perform high-resolution step-size measurements because of
the intrinsically large Brownian motion of DNA-tethered magnetic beads. For this reason, we here
optimized the MT technique by using a short DNA construct (1.5 kbp) to minimize the Brownian motion to

its limits such that we could detect very small steps down to a resolution of ~10 nm even at sub-pN forces.
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Furthermore, we measured up to 300 DNA tethers simultaneously with instrumental drift compensation
at a frequency of 50 Hz, which provides large data sets suited for statistically robust analysis (Eeftens et
al., 2017; Janissen et al., 2018, 2020).

More specifically, we tethered torsionally unconstrained, linear 1.5 kbp dsDNA molecules between
magnetic beads and a glass surface (Fig. 1A). At a constant applied force of 8 pN, a very low concentration
(1 nM) of condensin together with 1 mM ATP was injected to the flow cell, using the same buffer conditions
that were previously used to study single condensin-mediated DNA loop extrusion (Ganji et al., 2018).
After incubation for 8 minutes, the applied force was suddenly lowered to a force below 1 pN (0.2 pN in
the example of Fig. 1B) to monitor the stepwise decrease in the DNA end-to-end length, which resulted
from condensin-driven DNA loop extrusion activity (Fig. 1B; left), until the DNA was extruded to an extent
that the magnetic bead reaches the surface after a few steps. Importantly, without ATP, changes in DNA
lengths were never observed, confirming that the reduction in DNA lengths in presence of ATP resulted
from an ATP-dependent DNA-loop-extrusion processes (Fig. 1B; right), in agreement with previous studies
(Eeftens et al., 2017; Strick et al., 2004). Counting the fraction of DNA tethers that exhibited a stepwise
reduction in apparent DNA length (Fig. 1C), we found that 60% of the tethers showed such loop extrusion
activity at this low 1 nM concentration. The fact that 40% of the DNA tethers showed no activity indicates
that the observed DNA extrusion is mediated by single condensin complexes, since, assuming a Poisson
distribution for the number of active condensin complexes acting on a single DNA tether, the calculated
average number A of acting condensins per DNA molecule is 4 = 0.9 (from /’loe‘)‘/O! = 0.4), a number
that is in good agreement to a previous single-molecule fluorescence-based DNA-loop-extrusion study

conducted at comparable concentrations (Ganji et al., 2018).

Magnetic tweezers can be optimized to resolve 10-20 nm step sizes at sub-pN forces

We determined the minimally resolvable step size for different DNA tether lengths at forces ranging from
0.2-5 pN. The resolvable step size is largely limited by the intrinsic noise in MT measurements due to force-
dependent bead fluctuations resulting from Brownian motion (Ostrofet et al., 2018). To quantitatively
assess the resolution of our assay, we induced artificial steps of different sizes (AZ = 8.4, 16.8, 25.2, 33.6,
42.0 nm) by changing the focal plane relative to the DNA-tethered magnetic bead (Fig. 2A), and
subsequently determining to what extent we could resolve these user-induced steps. The example traces
shown in Figure 2B show that, as expected, the observable Brownian noise reduced at higher forces force.

In order to relocate the induced steps (Fig. 2B: top), we applied a step-finding algorithm (Kerssemakers et
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al., 2006) to fit our trace data using Chi-squared minimization without any fit parameter boundaries with
respect to step sizes or locations. The example traces in Figure 2B show that at high force (5 pN) the
smallest induced step size of AZ = 8.4 nm could readily be relocated, while at the lowest applied force (0.2
pN), the smallest steps drowned into the noise.

In order to determine the minimal detectable step size at different forces, we applied a validation
algorithm that compared the detected steps by the step-finding algorithm with the artificially induced
steps (Fig. 2C; red lines and blue lines, respectively). We defined a step relocation as ‘successful’, if both
the step size and the dwell time were close to the user-induced values. The example traces shown in Figure
2C for 1.0 (top) and 0.2 pN (bottom) show the comparison for induced steps of AZ = 16.8 nm. Successful
relocations are indicated with green triangles, whereas red triangles are false negatives, i.e., induced steps
that remained undetected. Over a range of step sizes and forces, this validation procedure was repeated
for ~100 traces with 40 induced steps at each condition. From the results shown in Figure 2D, we observed
that lower forces led to a lower relocation success, as expected. Defining the step-detection limit as the
step size where 50% (Fig. 2D: dotted line) of the induced steps were relocated successfully, we found that
the step detection limit decreased from 16 to 6 nm for applied forces that increased from 0.3 pN to 5 pN,
respectively.

Figure 2E displays the detection limit as a function of force for various DNA lengths. The obtained
step detection limits closely followed the trend of the bead’s Brownian noise in the z position over the
entire tested force range (Figs. 2E, S2: dashed lines). This indicates that Brownian noise is the dominant
parameter that determines the step detection limit. Longer DNA tethers with lengths of 3.4 and 10 kbp
exhibited higher step detection limits than the 1.5 kbp DNA tethers. The assay with the 1.5 kbp DNA
construct provided step detection limits below 20 nm, ranging from ~6 to ~20 nm, throughout the entire
0.2-5.0 pN force range tested. Importantly, these low detection limits are well below the ~50 nm size of
the condensin complex and thus below the putative step size in loop extrusion. In all subsequent DNA-

loop-extrusion experiments, we used the 1.5 kbp DNA construct for measuring step sizes.

Condensin-induced DNA loop extrusion exhibits a broad distribution of step sizes

Now well set up to resolve small steps, we characterized the steps in DNA loop extrusion induced by
condensin under various conditions. Figure 3A shows a typical data trace, where two distinct signatures
are observed: a series of consecutive downward steps (Fig. 3A; left inset), which was the generic DNA loop-

extrusion behavior, as well as occasionally a downward step that was followed by a single reverse step
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upwards (Fig. 3A,; right inset). Such reverse upward steps occurred exclusively after a prior downward step.
Employing our step-detection algorithm to the experimental data at 0.4 pN, we identified the distribution
of step sizes, as can be seen in Figure. 3B.

Notably, the step size distribution was found to be very broad, covering a wide range of small and
large step sizes. The median step size was found to be comparable for downward and reverse steps, i.e.,
32 + 26 nm for downward steps versus 31 + 29 nm for reverse steps (both median £ SD). In the absence of
ATP, no step signatures were observed (Fig. 3C). The measured dwell times (Fig. S3A) followed a single
exponential distribution for both downward and upward steps, suggesting that the steps originated from
a simple one-rate-limiting process. Individual DNA extrusion steps almost exclusively were very fast, i.e.,
occurring within a single 20 ms imaging frame.

The key result of Figure 3B is the observed median step size value of 32 nm, which is twice higher
than the step detection limit of 17 nm (Figs. 2E, S3B) at this 0.4 pN force. To further validate our result, we
compared the experimental data with the step sizes deduced for the user-induced 33.6 nm steps (Fig. S3C),
which are close in value to the 32 nm median value in the condensin experiments. For this user-set step
size, our validation test resulted in only a small spread of ~15 nm (SD), indicating that tracking and step-

finding analysis errors were not causing the broad distribution observed for the condensin stepping.

Condensin extrudes DNA in steps of tens of nm, reeling in DNA up to 600 bps per step

We observed a pronounced force dependence of the stepping behavior which reduced with increasing
force (Fig. 3E, F). Above 1 pN, we could not observe any significant loop extrusion activity, in agreement
with previous observations (Eeftens et al., 2017; Ganji et al., 2018). Figure 3F show the distribution of
observed step size from 0.2 pN to 1 pN, which exhibited a distinctly narrower distribution at higher forces.
The ratio between reverse and downward steps was largely maintained at a value of about 0.3 at all tested
forces (Fig. S3D, E).

A major result of this work is displayed in Figure 3G and H, which plot the median step size versus
applied force. Step size values ranged from 17 + 14 to 45 + 38 nm (median + SD) between 1 and 0.2 pN,
respectively. The measured values were at all forces significantly larger than the step detection limits (grey
lines). The width of the step size distributions decreased from 38 nm (SD at 0.2 pN) to 14 nm (SD at 1.0
pN) upon application of higher force (Fig. S3D, F). Upon conversion of the measured step sizes in nm to
force-dependent DNA steps measured in bp, using a prior measured standard relationship between DNA

end-to-end length and force (Fig. S4), we found that the steps of extruded length of DNA also exhibited a
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notable force dependence, yielding steps from 100 bp up to 600 bp between 1 and 0.2 pN (Fig. 3H),
respectively. This force dependence as well as the large value of 600 bp (which clearly exceeds the ~150
bp that would be expected if a step would correspond to reeling in 50 nm of straight DNA) suggest that in
each step, loop extrusion proceeds by grabbing DNA from somewhere within the random polymer blob

that DNA forms due to its nature as a non-stretched semiflexible polymer at these low forces.

ATP binding is the step-generating stage in the ATP hydrolysis cycle that underlies condensin-mediated

DNA loop extrusion

While it is established that condensin extrudes DNA loops in an ATP-hydrolysis-dependent manner
(Eeftens et al., 2017; Ganji et al., 2018), our MT experiments interestingly allow to discriminate between
the mechanochemical functions of ATP binding and ATP hydrolysis through the study of ATP-mutants of
condensin. Specifically, we studied the DNA extrusion stepping behavior of the EQ mutant (Smc2¢1113q-
Smc4eissaq) Which allows ATP binding but blocks its hydrolysis by a Walker B mutation in the ATPase
domains, as well as for the Q-loop mutant (Smc2q147:-Smc4qz021), Which blocks ATP binding to the ATPase
domain entirely. Contrary to the wild-type condensin (Fig. 4A), the EQ mutant was not able to perform
consecutive DNA extrusion steps. Instead, the EQ mutant was solely capable of performing single
downward steps (Fig. 4B), which sometimes was followed by a reverse step (Fig. 4C). The Q-loop mutant
did not show any step activity (Fig. 4D). The relative occurrence of the different step signatures of observed
activity (i.e. consecutive downward steps, single downward steps, single downward followed by reverse
step pairs, and inactive traces) is shown in Figure 4E. The data clearly demonstrates the necessity of ATP
hydrolysis to perform consecutive DNA extrusion steps, while ATP binding (without subsequent hydrolysis)
only allows to perform single steps.

The distribution of step sizes as well as the force dependence of the step size for the EQ mutant
(Fig. 4F-H) was very similar to the WT condensin. The results indicate that the ATP-binding-dependent step
for the EQ mutant is identical to the WT step formation, and establish that ATP binding is the primary step-

generating process within the ATP hydrolysis cycle.

DISCUSSION

Using MT with short 1.5 kbp DNA tethers that allow the detection of DNA loop extrusion steps as small as

10-20 nm in the relevant low-force regime, we resolved that condensin extrudes DNA in a stepwise
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fashion, with a median step size of the order of 20-45 nm at DNA stretching forces from 1 to 0.2 pN,
respectively. Furthermore, we identified that ATP binding is the primary step-generating process during

DNA loop extrusion. Below, we discuss several of the most salient findings.

Step sizes indicate large conformational changes of condensin during loop extrusion

The measured median step sizes ranged between 20 and 45 nm over the relevant range of forces where
condensin is active, which amounts to a good fraction of the longest dimension of the condensin
holocomplex as the length of the SMC coiled coils is about 50 nm. The observed very large step sizes define
SMCs as an entirely distinct class of DNA-processing motor proteins that are unlike any other DNA-
processing enzymes reported before (e.g. helicase, translocases, polymerases), which translocate in single-
base pair steps upon each ATP hydrolysis cycle (Graham et al., 2010; Hsieh et al., 2015; Liu et al., 2014;
Pease et al., 2005; Seidel et al., 2004; Sirinakis et al., 2011).

Our accurate measurements of the DNA-extrusion step size yielded a smaller value than previous
estimates of ~¥80 nm (at 0.4 pN and 2 nM condensin, measured with 4 kbp DNA; (Strick et al., 2004) and
~200 nm (0.75 pN, 8.6 nM condensin, 20 kbp DNA; (Eeftens et al., 2017). As the noise increases with the
DNA tether length (Fig. 2E), small DNA loop extrusion steps may have been overshadowed in these studies.
In addition, higher condensin concentrations can readily increase the propensity of multiple condensins
acting on a single DNA tether. Considering that the distribution of single condensin-mediated step sizes is
very broad (Fig. 3B, D), noise in the earlier studies may have effectively cut off the smaller step sizes,
yielding an average step size that exceeds the intrinsic value. Our observed range of average step sizes
(20-45 nm), is, however, in good agreement with the recently reported hinge-to-globular domain distance
of 22 + 13 nm that is involved in a dynamic toggling between O to B shapes (Fig. S1) (Ryu et al., 2020). The
large DNA step sizes also match quite well with values that can be guessed from combining the loop
extrusion and ATPase rates in previous in vitro studies on condensin and cohesin with ~1 kbp/s and 2 ATP/s
(Davidson et al., 2019; Ganji et al., 2018; Kim et al., 2019), and of SMC-ScpAB from B. Subtilis with ~800
bp/s and 1 ATP/s (Wang et al., 2017, 2018).

Large extrusion steps are associated with the structural flexibility of DNA at low forces

A broad distribution of condensin-mediated DNA loop extrusion step sizes was observed (Fig. 3B, F), with

a variation in step sizes that was well beyond that set by the instrumentation, as can be seen from the
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much more narrow variation in the user-induced step sizes in our step-validation tests (Figs. 3D, S3B,C).
One contribution to the variation in measured DNA extrusion step sizes could be a variation in the degree
of internal conformational changes of the condensin, similar to a sizeable variation (SD = 13 nm) in the
hinge-to-head motion that was observed in AFM (Ryu et al., 2020). Much more importantly, however, is
the variation that is induced by the structurally very flexible and dynamic nature of DNA at these very low
stretching forces. Infrequently, and particularly at the lowest force, we observed very large step sizes of
~100 nm, which clearly exceeded the ~50 nm size of the condensin complex. We envision that such steps
result from a condensin complex that ‘grabs’ DNA from a relatively remote location during a temporal
excursion.

Indeed, our observation that step sizes can correspond up to an amount of 600 bp per step
supports the notion that condensin is able to bind to a remote region of DNA within the polymer blob of
non-stretched, flexible, and dynamic DNA, to subsequently reel it in. Accordingly, the observed strong
force-dependence of the step size can be attributed to the polymeric nature of the DNA, with smaller steps
at higher forces when the DNA is increasingly stretched out. The fact that DNA extrusion step sizes are
dependent on the force due to the polymeric nature of DNA, is entirely different from the characteristics
of motor proteins such as myosin and kinesin (Carter and Cross, 2005; Clemen et al., 2005; Mehta A.D. et
al., 1999), which walk along stiff protein filaments (Gittes et al., 1993). We found that the mechanical work
(Force X Stepsize) done during a single DNA extrusion step slightly increased with force (Fig. S3G). If we
assume that the stepping is associated with a cycle that involves the hydrolysis of a single ATP (i.e., an
energy of 20 kgT), the energy efficiency would range from 12 to 20 % for forces from 0.2 to 1.0 pN,
respectively, a number that is not uncommon for other ATP-driven molecular motors (Lee and Yang, 2006;
Thomsen and Berger, 2009). Furthermore, the found stall force of ~1 pN for DNA loop extrusion by
condensin is very low compared to stall forces of other DNA-translocating motors, but in agreement with

previous findings (Eeftens et al., 2017; Ganji et al., 2018).

ATP binding and hydrolysis relate to two distinct mechanistic processes

Our results unequivocally demonstrate that ATP binding is the process that is associated with the DNA-
extrusion stepping, since the ATP hydrolysis-deficient EQ mutant (Fig. 4E) was able to make single steps,
but unable to perform consecutive DNA extrusion steps, while the ATP-binding-deficient Q-loop mutant

did not show any DNA extrusion activity. Consequently, and different from most other ATPase motor
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proteins, ATP hydrolysis occurs downstream in the hydrolysis cycle to enable DNA extrusion steps in a
consecutive manner.

Our finding that ATP binding is the step-generation process differs from a previously suggested
DNA pumping model (Marko et al., 2019) that attributed ATP hydrolysis to the generation of a step,
associated with the zipping-up of the SMC arms from an ATP-bound O shape into an ATP-unbound | shape
that pushes DNA from the hinge to the head domains. By contrast, our result that ATP binding is the step-
generating process is in good agreement with cryo-EM results on cohesin (Collier et al., 2020; Dao et al.,
2018; Higashi et al., 2020; Shi et al., 2020) and with recent AFM data on condensin that showed a transition
from an extended O shape to a collapsed B shape upon ATP binding (Ryu et al., 2020).

Our data are also in good agreement with a DNA scrunching model that we recently hypothesized
based on these AFM data (Ryu et al., 2020), where condensin first anchors itself to DNA using the safety
belt of the Ycg1-Brn1 domains (Fig. 4l i) (Ganji et al., 2018; Kschonsak et al., 2017), whereupon the hinge
domain binds to a proximate region of the DNA, and ATP binding induces a transition from an extended O
shape to a collapsed B shape, thereby pulling the hinge-bound DNA to the globular domain (Fig. 4l ii),
which establishes a step in the loop extrusion process. In support of this concept, previous studies showed
that ATP binding induces the dimerization of the head domains, forming a positively charged cavity that is
able to bind DNA (Erickson, 2009; Hassler et al., 2019; Liu et al., 2016; Seifert et al., 2016; Shi et al., 2020;
Woo et al., 2009). The low stalling force that we observed is consistent with a type of a motor mechanism
that involves a Brownian ratchet motion of the flexible SMC arms that underlies the hinge to globular
domain step. In the next stage of the cycle, ATP hydrolysis occurs whereupon the hinge is released and the
condensin returns to the O shape where it is available to bind to a new DNA target site for the next step
(Fig. 4l iii), thus closing the DNA loop extrusion cycle. Additional support for this scenario is provided by a
prior study that showed that ATP hydrolysis induces the dissociation of the head dimers, hence disrupting
the capability to bind DNA (Hassler et al., 2019). The model indicates that condensin may employ ‘credit-
card energetics’ (Kowalczykowski, 2008) in which ATP binding induces a single step whereas the energy
released upon ATP hydrolysis is coupled to downstream processes in the DNA loop extrusion, well after

the step-generation upon ATP binding.

CONCLUSION

In conclusion, our experimental results demonstrate that the SMC proteins are unique protein complexes

that can extrude DNA loops with very large step sizes up to 600 bp. Our study shows that DNA loop
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extrusion steps consist of two distinct processes: ATP binding provides the step-generating process where
likely DNA bound to the hinge domains is pulled to the globular domains, leading to DNA loop extrusion.
In the second subsequent step, ATP hydrolysis presumably enables the hinge domain to target a next DNA
site for a subsequent loop extrusion step. The observed strong dependence of step size on the applied
DNA stretching force revealed that the flexible nature of the DNA polymer at very low stretching forces
facilitates the extrusion of very large amounts of DNA in each step in the loop extrusion process. Our work
reveals unique characteristics of the motor action of condensin which may be conserved among other SMC

proteins that exhibit DNA loop extrusion.
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METHOD DETAILS

Preparation of protein and DNA
S. cerevisiae wild type condensin, as well as the EQ (Smc2e11130-SMcdei3s2q) and Q-loop (Smc2aqiaz-
Smcdqsezl) mutants, were expressed and purified as previously described (Ganji et al., 2018).

Singly biotinylated linear dsDNA constructs with a length of 1.5, 3.4, and 10 kbp were synthesized
via PCR and enzymatically ligated to digoxigenin-enriched DNA handles. Primers (Table S1) were obtained
from Ella Biotech GmbH, Germany or Integrated DNA Technologies, Europe. Biotinylated DNA fragments
of different length were produced by using biotin-labeled forward primers (1.5 kb: JT-273; 3.4 kb: TL-34;
10 kb: TL-101) and reverse primers (1.5 kb: JT-275; 3.4 kb: TL-35; 10 kb: TL-102) that contain a Bsal
restriction site (Table S1) on pBluescript Il SK+. To create the digoxigenin (DIG)-enriched handles, a 485 bp
fragment from pBluescript Il SK+ (Stratagene, Agilent Technologies Inc., USA) was amplified by PCR in the
presence of 1:5 Digoxigenin-11-dUTP:dTTP (Jena Bioscience, Germany) using primers CD21 and CD26
(Table S1). Prior to ligations of the DNA fragments and handles, all amplicons were digested with the non-
palindromic restriction enzyme Bsal-HFv2 (New England Biolabs, UK). The ligation of the DIG-handles and

biotinylated DNA fragments was carried out overnight using T4 DNA ligase (New England Biolabs, UK).

Magnetic tweezers

The magnetic tweezers setup used in this study was as described previously (Janissen et al., 2018). Briefly,
a pair of vertically aligned permanent neodymium-iron-boron magnets (Webcraft GmbH, Germany) 1 mm
apart was used to generate the magnetic field. They were placed on a motorized stage (#M-126.PD2,
Physik Instrumente) above the flow cell and allowed red LED light to pass through and illuminate the
sample. The transmitted light was collected with a 50x oil-immersion objective (CFI Plan 50XH, Achromat;
50x; NA = 0.9, Nikon), and the bead diffraction patterns were recorded with a 4 megapixel CMOS camera
(#Falcon 4M60; Teledyne Dalsa) at 50 Hz. If bead rotation was needed, the magnet pair was rotated with
a DC servo step motor (C-150.PD; Physik Instrumente) around the illumination axis. Image processing of
the bead diffraction patterns allowed us to track the real-time positions of DNA-bound magnetic beads
and surface-bound polystyrene reference beads. The bead x, y, z position tracking was achieved using a
cross-correlation algorithm in a custom LabView software (2011, National Instruments Corporation)
(Cnossen et al., 2014; De Vlaminck et al., 2012). The software also applied spectral corrections to correct
for camera blur and aliasing. Up to 300 beads were tracked simultaneously with an approximate Z-tracking

resolution of ~¥2 nm.
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Single-molecule condensin-driven loop-extrusion MT assay

Liquid flow cell preparation and DNA tethering has been described in detail elsewhere (Janissen et al.,
2018). Briefly, streptavidin-coated superparamagnetic beads (MyOne DynaBeads, LifeTechnologies, USA)
with a diameter of 1 um were used within this study. Commercially available polystyrene beads
(Polysciences GmbH, Germany) with a diameter of 1.5 um were used as reference beads fixed to the glass
surfaces. The polystyrene reference beads were diluted 1:1500 in PBS buffer (pH 7.4; Sigma Aldrich) and
then adhered to the KOH-treated (Invitrogen) flow cell glass surface. Afterwards, digoxigenin antibodies
(Roche Diagnostics) at a concentration of 0.1 mg/ml in PBS buffer were incubated for ~1 hour within the
flow cell, following passivation for ~2 hours of 10 mg/ml BSA (New England Biolabs). After removing non-
adhered BSA by washing the flow cell with PBS, 1 pM DNA in PBS was incubated for 30 minutes at room
temperature and washed out with PBS. The subsequent addition of 100 pL streptavidin-coated
superparamagnetic beads (diluted 1:100 in PBS buffer; MyOne #65601 Dynabeads, Invitrogen/Life
Technologies) with a diameter of 1 um resulted in the attachment of the beads to the biotinylated end of
the DNA. Prior to conducting the condensin-mediated loop extrusion experiments, the DNA tethers were
assessed by applying a high force (8 pN) and 30 rotations to each direction. Only DNA tethers with singly
bound DNA and correct DNA end-to-end lengths were used for the subsequent single-molecule
experiments.

Since previous studies have shown that high-salt wash after ATP hydrolysis of condensin does not
affect their binding to DNA for up to 1 hour (Eeftens et al., 2017), DNA tethers were re-used for multiple
flush-ins of fresh constituents. Condensin was added to the flow cell in reaction buffer (20 mM Tris pH 7.5,
50 mM NacCl, 2.5 mM MgCl,, 1 mM DTT, 40 pg/uL BSA) at a concentration of 1 nM or 10 nM (indicated in
manuscript text) while applying 8 pN to the DNA tethers. Afterwards, the force was lowered to 0.4 pN to
verify condensin binding and DNA loop-extrusion activity for 90 seconds before the attached bead was
able to reach the surface, and the again to 8 pN. To wash unbound condensin out, the flow cells were
washed with 500 ul reaction buffer containing 500 mM NaCl and incubated for 5 minutes. After additional
washing with 300 pl of reaction buffer, ATP was injected to re-initiate DNA loop extrusion and the force
was instantly (within ~1 s) adjusted to the force of interest (0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, and 5.0
PN).

After a 5 minute observation time, the force was instantly brought back to 8 pN, accompanied by
magnetic bead rotation of 20 times in each direction, to induce full DNA length recovery and rendering

the DNA tethers ready for another experiment round. The same process was repeated for various forces,
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and care was taken to keep the total measuring time within the time condensin stayed active (typically,

<40 min).

Data analysis

The single-molecule data was processed with IGOR Pro, as previously described (Janissen et al., 2018), and
further analyzed by custom-written MATLAB scripts. From our raw data, we first removed traces showing
surface-adhered magnetic beads and apparent short DNA tethers where the DNA-bead attachment points
were far from the ‘south pole’ of the beads. To do this, the method described in (Klaue and Seidel, 2009)
was used. Tethers that detached from the surface during the measurement were also rejected from
further analysis.

All traces resulting from experiments conducted at identical conditions were pooled by
concatenating the traces together into a single time-dependent series. Prior to the step-detection analysis,
all traces were filtered using a sliding median average filter over 10 data points to reduce the effect of
Brownian noise. An automated step detection algorithm, described in (Kerssemakers et al., 2006), was
then applied to the pooled traces for non-biased step detection. Trajectories of condensin-mediated
activities were classified according to their behavior, such as loop extrusion steps consisting of consecutive
downward steps, single downward steps, and single reverse steps (see examples shown in Fig. 4F). The
changes in measured bead z-positions for all trajectories were converted to base pairs using base pair
length values resulting from prior measured relation between the DNA end-to-end length and the applied

force (Fig. S2).

Step validation and detection limit experiments
All step validation experiments were performed with PBS buffer, supplemented with 40 pg/mL BSA.
Otherwise, tethered beads were prepared in identical fashion as the experiments involving condensin.
Prior to the experiments, a tether test was performed to evaluate the quality of DNA tethers by applying
a high force and rotations. Only tethers with singly bound DNA, correct end-to-end lengths, and non-
surface adhered magnetic beads were used for the step detection experiments.

In the step validation experiments, the magnetic force was set to a fixed low value (ranging from
0.2 pN to 5 pN). Then, the piezo holding the objective was set to step up or down every 10 seconds, in
multiples of 10 nm. Each sequence contained steps from 50 nm down to 10 nm, in multiples of 10 nm.
Because the piezo stepping changes the position of the focal plane relative to the bead, each bead

exhibited an apparent motion in multiples of 8.4 nm; a difference that stems from the change in refractive
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index from immersion oil/glass to water. Depending on the pulling force, these steps were more or less
submerged within the Brownian motion of the beads. After tracking the thermal fluctuations of the beads,
a drift correction was applied by using the average of traces of the reference beads subtracted with the
known piezo steps. Next, traces were filtered to 2 Hz with a moving median filter and subjected to step
analysis (Kerssemakers et al., 2006). The parameters of the step finding algorithm were kept constant for
all stepping experiments. From the step analyses, we obtained a collection of detected steps, each
determined by a time of occurrence and a detected step size. This dataset was then compared with the
known steps from the piezo motion. A step detection was judged correct if there was a piezo step nearby
within 10% (~1s) of the expected dwell time and 30% of the expected step size. Per step size, an average
success-of-detection percentage was determined over all traces. Analogously, the reverse was checked as
well: a piezo step was deemed ‘found’ if it was seen back in the detected data using the same margins. We
found that both types of detection evaluation yielded equal success percentages, as it should be expected
for well-tuned step detection. We used the average of these two to obtain for each force a success
percentage as a function of step size. The step size where this success percentage crossed 50% was then

taken as the detection limit for each force.
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Figure 1. Step-wise DNA loop extrusion by a single condensin holocomplex. (A) Schematic of the
experimental magnetic tweezers assay to monitor DNA loop extrusion by single condensins. The dotted
lines showed the positions of before and upon DNA loop extrusion. (B) Representative trajectories of
active condensin showing step-wise DNA loop extrusion in the presence of ATP (left), and inactive
condensin in absence of ATP (right), at 0.2 pN DNA stretching force. Blue dotted line depicts the DNA
tether length at 8 pN, and the magenta dotted line the length of bare DNA at 0.2 pN. Arrows indicate steps
in the trace. Red lines are fitted steps from the step-finding algorithm. (C) Relative occurrence of active
and inactive traces in the presence and absence of ATP for 1 nM condensin (N = 207 and 91, respectively).
Inactive trajectories represent either bare DNA where no condensin was bound (due to the low
concentrations of condensin employed), or DNA where a condensin complex bound but could not perform

loop extrusion, e.g., due to the absence of ATP.
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Figure 2. Step validation and step-detection limits for different DNA lengths and stretching forces. (A)
Schematic for inducing changes in apparent bead Z position by changing the focal plane distance (42)
relative to the bead. To do so, the distance between objective and sample surface (4Z‘= 10, 20, 30, 40, 50
nm) was changed, which in turn changed the focal-plane distance relative to the tethered bead (AZ = 8.4,
16.8, 25.2, 33.6, 42.0 nm, respectively, accounting for the refractive index mismatch). (B) Example
trajectories of induced AZ steps (top; AZ values in nm depicted above the corresponding induced steps),
and corresponding measured bead AZ positions of a 1.5 kbp DNA at a high (5 pN; center) and low (0.2 pN;
bottom) force. AZ bead position trajectories were fitted (red) with a step-finding algorithm. (C) Zooms of
trajectories described in (B) at 1 pN (top) and 0.2 pN (bottom) DNA stretching forces. AZ bead position
trajectories (grey) were filtered (black) to 2 Hz using a moving median filter, prior to applying the step-
finding algorithm (red). The induced changes in AZ position (AZ=16.8 nm in the shown example) are
superimposed (blue). The step-finding algorithm resulted in successful (green triangles) or unsuccessful
(red triangles) detection of induced steps. (D) Probabilities for successful step detection (mean + SD) versus
step size for 1.5 kbp DNA at different applied DNA stretching forces. The step-detection resolution is
defined as the step size where steps are successfully detected with a 50% probability (dashed line). (E)
Step detection resolution limit versus DNA stretching force for different DNA lengths (1.5, 3.4, 10.0 kbp
DNA; N >80 molecules for each data point). The transverse A4Z bead fluctuations <oz> (dashed lines)

resulting from bead Brownian motion are plotted as well. See also Fig. S2
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Figure 3. Broad range of force-dependent step sizes of condensin-mediated DNA loop extrusion. (A)
Representative DNA loop-extrusion trajectory measured at 0.4 pN. Orange lines are fits of the step-finding
algorithm. Insets show zooms with consecutive forward steps (left inset) and single forward and reverse
steps (right). (B) Step size distribution for the 0.4 pN data (N = 1,727). Negative step values denote forward
steps while positive values are reverse steps. (C) Observed number of forward and reverse steps per
trajectory of 15 min in the presence and absence of ATP at 0.4 pN. Statistical analysis consisted of an
unpaired two-tailed t-test (*** indicates p < 0.001). (D) Step size distributions of condensin-mediated DNA
loop extrusion (magenta, N = 5,128) and piezo-induced artificial step size of 33 nm (cyan, N = 1,069) at 0.4
pN. (E) Average number of forward and reverse steps (mean * SD) per 2-minute trace (N = 108, 90, 67, 73,
48, 57, 31, 23, 11, 6, 4 from 0.2 to 5.0 pN). (F) Step size distributions for different DNA stretching forces.
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Dotted lines denote the range below the step detection limit. Data for other forces are provided in SI. (G)
Forward (N > 500 for each force) and reverse step (N > 300 for each force) sizes in nm (median + SEM)
verse force. (H) Same as G but step size in now given in base pairs. Step size in base pair was calculated
using the measured relation between the DNA end-to-end length and the applied force. The detection

limit in G and H was obtained from Fig. 2E. See also Figs. S3 and S4.
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Figure 4. ATP-binding of condensin induces a single step in DNA loop extrusion. (A-D) Representative
trajectories for (A) consecutive DNA loop extrusion steps, (B) a single forward step, (C) a single forward
followed by a reverse step, and (D) an inactive trajectory, all probed in the presence of ATP. (E) Observed

fractions of different stepping behavior (N = 85, 96, 77, and 18 for wild-type with ATP, without ATP, EQ
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mutant with ATP, and Q-loop mutant with ATP, respectively). Statistical analysis consisted of an unpaired
two-tailed t-test (*** indicates p < 0.001). (F) Step size distributions of the EQ mutant in the presence of
ATP at different DNA stretching forces (median + SD; 0.2 pN: N = 154; 0.5 pN: N=186; 1 pN: N=106). Dotted
lines denote step sizes below the step resolution limit. Data for other forces are provided in Sl. (G) Step
size in nm (median + SEM) for WT (magenta) and EQ mutant (green) versus applied force (0.2 pN: N = 69;
0.3 pN: N=53; 0.4 pN: N=73; 0.5 pN: N=74; 0.6 pN: N=45; 0.7 pN: N=58; 1 pN: N = 76). Forward and
reverse steps were pooled together in these data. (H) Same as G but converted to step size in base pairs.
The detection limit in G and H was obtained from Fig. 2E. (I) Proposed working model for the condensin
conformational changes during the ATP hydrolysis cycle. (i) Condensin holocomplex is anchored to DNA by
the Ycgl-Brnl subunit. In the open configuration, the hinge domain binds DNA. Note that the hinge grabs
an arbitrary nearby location within the randomly structured DNA polymer coil. (ii) Upon ATP binding to
condensin, the SMC ring changes from the open to a collapsed (butterfly) configuration, generating a single
DNA loop-extrusion step where DNA is reeled in via the hinge movement. From our data, we conclude that
this step is in principle reversible, whereby state ii can return to state i. (iii) After DNA transfer to the
globular domain of condensin, the hinge is released, presumably during ATP hydrolysis, whereupon it is
available to bind new DNA for the next step in the cycle. Upon repetition of this cycle, DNA is extruded

into an expanding loop in consecutive steps. See also Fig. S4.
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SUPPLEMENTAL INFORMATION

Table S1: Primer sequences used for the synthesis of linear DNA tether constructs.

Oligonucleotide Sequence
JT-273 5'-Biotin-GCAATAAACCAGCCAGCCGGAAG
JT-275 5-TTTTTTTTTTGGTCTCTATACTACCGTCGACCTCGAGGG
CDh-21 5’-GACCGAGATAGGGTTGAGTG
CD-26 5 -TTTTTTTTTTGGTCTCTGTATCTGGCGTTACCCAACTTAATCGCC
TL-34 5'-Biotin-GACCGAGATAGGGTTGAGTG
TL-35 5’-CAGGGTCGGAACAGGAGAG
TL-101 5'-Biotin- CTGCGGTCTCGTAGGCCGATTTAGAGCTTGACGGGG
TL-102 5’- CTGCGGTCTCGCGGGTTGCAGCACTGGGGCCAGATG
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SUPPLEMENTARY FIGURES

O shape B shape
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heads Yeg1

Figure S1. Structural domains of the yeast condensin holocomplex. The condensin holocomplex consists
of two antiparallel folded coiled-coil arms, Smc2 and Smc4 (each ~50 nm in length), mutually linked to a
hinge domain dimer at one end, and an ATP-binding cassette (ABC)-type nucleotide-binding head domain
at the other end, where the two head domains are mutually connected by the Brn1 kleisin subunit. Two
HEAT-repeat subunits, Ycs4 and Ycgl, are bound to the Brn1l kleisin subunit. Recent AFM data (Ryu et al.,
2020) indicated an O-shape apo state, where the hinge is located far from the globular domain, and a B
shape ATP-bound state where the hinge is in close proximity of the globular domain.
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Figure S2. Step-detection limits for different DNA lengths and stretching forces. Step detection resolution
limit versus DNA stretching force (0.2 — 5 pN) for different DNA lengths (1.5, 3.4, 10.0 kbp DNA; N >80
molecules for each data point). The transverse AZ bead fluctuations <oz> (dashed lines) resulting from
bead Brownian motion are plotted as well. Related to Fig. 2.
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Figure S3. Characterization of piezo-induced and condensin-mediated DNA- extrusion steps at

different forces. (A) Dwell-time distributions of downward (red; N = 273) and reverse steps (blue; N = 665)
that show single-exponential fits (solid lines) with time constants 7 and 7y, respectively. (B) Detected
step sizes versus induced step sizes for the different piezo-induced step sizes at 0.4 pN (median + SD). N =
255, 870, 1033, 1069, and 1063 for 8.4, 16.8, 25.2, 33.6, and 42 nm step sizes, respectively. (C) Force-
dependent width (SD) as function of applied force, for the detected step size distributions from piezo-
induced artificial step sizes of 33.6 nm (N = 994, 1060, 1069, 989, 987, 942, 1,000, 852, and 847 for 0.2,
0.3,0.4,0.5,0.6,0.7,0.8, 0.9, and 1 pN, respectively). (D) The ratio between number of reverse steps and
downward steps observed at different DNA stretching forces (mean + SD; N > 500 for each force). Red line
depicts the average of the data (y = 0.3). (E) Step size distributions with different forces (N =153, 131, 102,
154, 118, 155 and 140 for 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 pN, respectively) (F) Width (SD) of
detected step size distributions versus applied force for condensin-induced step (N >500). ( G) The work
done (F X step size) in each single DNA extrusion step, plotted versus force (median + SEM; N > 500 for
each force). Right axis denotes the corresponding energy efficiency (%). Related to Fig. 3.
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Figure S4. Conversion from nanometers to base pairs at different forces. (A) Force-extension data of
linear 3.4 kbp dsDNA (red; mean + SD; N = 32), fitted to a WLC model, providing a persistence length Lp =
42 nm, and contour length Lc=1.16 um. (B) dsDNA base pair length (L) in nanometer extracted from the
WLC fit in (A) for the different forces applied in the condensin experiments. Related to Figs. 3 and 4.
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