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Abstract

Self-organized pattern formation is vital for many biological processes. Mathemat-
ical modeling using reaction-diffusion models has advanced our understanding of how
biological systems develop spatial structures, starting from homogeneity. However, bio-
logical processes inherently involve multiple spatial and temporal scales and transition
from one pattern to another over time, rather than progressing from homogeneity to a
pattern. One possibility to deal with multiscale systems is to use coarse-graining meth-
ods that allow the dynamics to be reduced to the relevant degrees of freedom at large
scales. Unfortunately, these approaches have the major disadvantage that the elimi-
nated scales cannot be reconstructed from the large-scale dynamics and thus one loses
the information about the patterns. Here, we present an approach for mass-conserving
reaction-diffusion systems that overcomes this issue and allows one to reconstruct in-
formation about patterns from the large-scale dynamics. We illustrate our approach
by studying the Min protein system, a paradigmatic model for protein pattern forma-
tion. By performing simulations, we first show that the Min system produces multiscale
patterns in a spatially heterogeneous geometry. This prediction is confirmed experimen-
tally by in vitro reconstitution of the Min system. On the basis of a recently developed
theoretical framework for mass-conserving reaction-diffusion systems, we show that the
spatiotemporal evolution of the total protein densities on large scales reliably predicts
the pattern-forming dynamics. Since conservation laws are inherent in many different
physical systems, we believe that our approach can be generalized and contribute to
uncover underlying physical principles in multiscale pattern-forming systems.
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Introduction

Pattern formation is fundamental for the spatiotemporal organization of biological pro-
cesses, such as cell division, chemotaxis, and morphogenesis. More than half a century
ago, Turing showed theoretically how local interactions (chemical reactions) and diffusion
of chemical species can lead to spontaneous spatial patterns [1]. Such reaction–diffusion
systems have been successfully used to explain pattern formation phenomena in nature
that arise self-organized from a stable homogeneous steady state [2, 3, 4, 5]. The analysis
proposed by Turing allows to predict the emergence of patterns with a characteristic length
scale as long as the entire dynamics remains in the vicinity of the homogeneous steady state
[6]. The validity of Turing’s approach has been also tested experimentally for coupled chem-
ical oscillators, and was found to reliably predict the experimental observations, provided
that the model parameters are spatially and temporally uniform [7]. Pattern-forming sys-
tems, however, are generally heterogeneous and therefore far from homogeneity, and involve
multiple spatial and temporal scales. An intriguing example of biological pattern formation
is morphogenesis, in which the spatiotemporal patterns of morphogens dictate the future
shape of an organism that is orders of magnitude larger than its constituents [4]. On a
smaller scale, protein concentration patterns in cells are essential for the spatiotemporal
control of cellular processes such as cell division and motility [8, 5, 9]. Protein patterns
can exhibit fascinating multiscale characteristics [10] and form in hierarchies of patterns on
several scales that affect one another [11].

Such complex multiscale biological processes involve many degrees of freedom at multiple
scales, rendering it difficult to analyze them and gain insight into the underlying principles.
To make progress on this issue, one needs to use systematic coarse-graining schemes that
allow the dynamics to be reduced to the essential degrees of freedom at the relevant time
and length scales. Well-known and powerful methods include amplitude equations [6] and
the renormalization group theory [12]. Unfortunately, these methods are restricted to the
vicinity of special points (a spatially uniform state for amplitude equations and a critical
point for the renormalization group, respectively). The Mori-Zwanzig formalism [13] is
another important approach which allows to decompose the dynamics of a system into
‘fast’ and ‘slow’ variables by means of projection operators. One arrives at a closed set of
equations for the slow variables, while the fast variables are treated as noise. One property
that all of these methods have in common is that the scales that have been integrated out
or eliminated are not resolved, and cannot be recovered from the coarse-grained level of
description. This is most apparent in the Mori-Zwanzig formalism, where the eliminated
degrees of freedom appear effectively as noise terms on the resolved scales. For pattern-
forming systems, one is however interested in the patterns on the unresolved scales1 as they
usually have a specific function in biological systems. This raises the question of whether
it is possible to reconstruct information about the unresolved scales from the dynamics at
the resolved scales?

1We adapt the term unresolved scales from the computational fluid dynamics literature to refer to the
(small) scales that have been integrated out in the coarse-grained description.
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We address this general problem in the concrete context of mass–conserving reaction–
diffusion (MCRD) systems. Recently, a new theoretical framework for MCRD systems has
been introduced [14, 15] that allows one to characterize their dynamics in the highly non-
linear regime. The basic idea is to consider reaction–diffusion system as decomposed into a
set of reactive compartments which are spatially coupled by diffusion. For an isolated com-
partment, one can determine the steady state (local equilibrium) and its stability properties
which both depend on the total densities within that compartment. Since diffusion causes
the lateral redistribution of these total densities, these local equilibria will change over time.
This concept of moving local equilibria enables one to study the physical mechanisms un-
derlying pattern formation and characterize the dynamics far away from the homogeneous
steady state. The fact that one is able to characterize the dynamics far from homogeneity
suggests that the local equilibria theory may be a promising approach to study heteroge-
neous systems. We therefore asked whether the ideas from local equilibria theory would be
applicable to investigate multiscale patterns?

To pursue this question, we use the Min protein system of E. coli which has emerged
as a paradigmatic model system for the study of pattern formation in cell biology [16, 17,
18, 19, 20]. Its dynamics is driven by two proteins, MinD and MinE, which cycle between
cytosolic and membrane–bound states and interact nonlinearly on the membrane (Fig. 1A).
In E. coli, these proteins oscillate from cell pole to cell pole and thereby position the cell
division machinery to midcell [16, 17]. Studying the Min dynamics in various reconstituted
systems has led to the discovery of a rich set of patterns including traveling waves and
spirals [18], chaotic patterns [21, 22, 23, 10], “homogeneous pulsing” [24, 25, 26], as well as
quasi-stationary labyrinths, spots, and mesh-like patterns [10, 27]. Theoretical analysis of
mathematical models has lead to the key insight — and experimentally confirmed prediction
— that the average total densities of MinD and MinE and the bulk height are key control
parameters for pattern formation in the reconstituted Min system [5, 28]. The rich set
of patterns, experimental accessibility in vitro and theoretical understanding make the
Min-system an ideal candidate to investigate the role of spatial heterogeneity on pattern
formation.

Since varying the bulk height affects the local equilibrium state and is a key control
parameter for pattern formation [5, 28], we study the Min dynamics in a wedge–shaped
geometry with a membrane placed on the bottom surface (Fig. 1B). While there are many
distinct ways to introduce large–scale spatial heterogeneities into the system, e.g. by in-
troducing space-dependent kinetic rates, we chose to use a wedge geometry because it is
relatively easy to implement experimentally. In numerical simulations, we find that the
system exhibits a striking range of transient patterns, that coexist in different spatial re-
gions along the membrane (Movie 1 and Fig. 1C). As time progresses, patterns in different
regions change and transition to other patterns.

To characterize these complex dynamics that play out on multiple spatial and temporal
scales, we use ideas based on local equilibria theory [14, 15, 8]. We show that one can
reconstruct the type and characteristics of patterns on small scales from the local protein
mass densities, which are the essential degrees of freedom on large spatial and temporal
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scales, i.e. the “hydrodynamic variables” of the system. The key to this reconstruction
are correlations between instantaneous, local dispersion relations, calculated from the local
mass densities, and the local pattern characteristics. This reconstruction of small-scale
features (on unresolved scales), together with a coarse-grained description for the mass-
redistribution dynamics on large scales allows us to understand and predict the long–term
temporal evolution of the system. Thus, the combination of coarse-graining with a (partial)
reconstruction of small/fast-scale features is a significant advance as it achieves a greatly
reduced description of the system’s dynamics without sacrificing the information on the fine
scales of the spatiotemporal patters.

A key prediction from our numerical simulations and theoretical analysis is that different
pattern types form at different positions along the wedge shaped geometry. To test this
prediction experimentally, we performed experiments with a reconstituted Min system in
wedge-shaped microfluidic cells. In agreement with the theoretical prediction, we find a
range of transient patterns coexisting in different spatial regions along the membrane.

Results

The Min protein system in wedge geometry

Mathematically, the Min-protein dynamics is described by bulk-surface coupled reaction–
diffusion equations, which describe the concentrations of cytosolic proteins MinD-ATP,
MinD-ADP, and MinE, c = (cDD, cDT, cE), in the bulk volume V, and the concentrations of
membrane-bound MinD and MinDE complexes, m = (md,mde), on the surface S. For the
wedge geometry, in spatial coordinates x = (x, y, z), we place the membrane surface (with
lateral dimensions L×L) in the x−y plane at z = 0 and let the bulk height vary as a linear
ramp from H0 to H1 along the x-direction (see Fig. 1B).

The dynamics of bulk components c(x, t) is governed by the equation

∂tc(x, t) = Dc∇2c + Λc, (1)

where Dc denotes the bulk diffusion constant and Λ = diag(−λ, λ, 0) describes nucleotide
exchange of MinD in the bulk. The dynamics of membrane components m(x, y, t) is con-
strained to the membrane surface and takes the form:

∂tm(x, y, t) = Dm∇2
Sm + r(c|z=0,m), (2)

where Dm is the membrane diffusion constant and ∇2
S = ∂2

x + ∂2
y is the surface Lapla-

cian. The membrane reactions r, which comprise attachment, detachment, and recruitment
processes of Min proteins, are specified in the Materials and Methods section.

The dynamics in the bulk and on the surface are coupled by reactive boundary condi-
tions,

−Dc∂zc|z=0 = f(c|z=0,m), (3)

that describe the bulk fluxes induced by attachment and detachment of proteins at the
membrane (see Materials and Methods). At the remaining boundaries, no-flux boundary
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conditions are imposed such that the system is closed. Together, the above dynamics
conserve the average mass densities of MinD and MinE:

n̄D |V| = 〈md +mde〉S |S|+ 〈cD 〉V |V| , (4a)

n̄E |V| = 〈mde〉S |S|+ 〈cE〉V |V| , (4b)

where cD = cDD + cDT is the total cytosolic MinD concentration; 〈·〉S and 〈·〉V denote the
mean on the surface and in the bulk respectively; |S| and |V| are the total surface area and
bulk volume (see Materials and Methods).

Using finite element (FEM) simulations we investigated the spatiotemporal dynamics
of the Min system in wedge geometry. Our simulations show a broad range of different
patterns — including traveling waves, standing waves and chaotic patterns — coexisting
in different spatial regions of the membrane (see Movie 1 and Fig. 1C). Interestingly, the
regions where these patterns are found change over time as the patterns transition from
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Fig. 1. (A) Schematic illustration of the Min-protein reaction network. (B) Wedge-
geometry with a membrane surface at the bottom plane (z = 0) and bulk height H(x)
increasing linearly along the x direction. (C ) Snapshot of the membrane-density of MinD,
obtained by numerically simulating the Min dynamics Eqs. 1–3 in the geometry shown
in (B). One observes regions with chaotic patterns, standing waves (SW, dashed green
outline) and traveling waves (TW) along the membrane and at different bulk heights; see
Movie 1.
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one type to another. For long simulation times, we observe that patterns transition to
standing waves, such that the entire domain is covered by a single pattern type in the final
steady state. The pattern in steady state depends on the specific choice of parameters, and
therefore can be altered by changing the model parameters (Fig. S1 and Movie S1).

Experimental implementation

We tested our theoretical prediction on this multi-scale dynamics in an experimental system
consisting of a wedge-shaped microfluidic flow chamber (Fig. 2A). The bottom and top
surface of the wedge were covered with a supported lipid bilayer consisting of DOPG:DOPC
(30:70 %) which mimics the natural membrane composition of E. coli [29]. The length of
the wedge was typically about 8− 14 mm and the width about 3− 4 mm. The bulk height
range was approximately 2−50 µm (Fig. 2B). Min proteins were distributed in the chamber
by rapid injection of a solution containing 1 µM MinD and 1 µM MinE (including 10 %
fluorescently labelled MinD and MinE proteins for visualization), together with 5 mM ATP
and an ATP-regeneration system [28].

Figure 2C shows a snapshot of Min protein patterns along the bottom surface of the
wedge geometry 30 minutes after injection. The experiments exhibit the same essential hall-
marks of multiscale Min protein patterns that we observed in our numerical simulations. In
particular, consistent with our simulations, we observe a sequence of distinct spatiotempo-
ral patterns coexisting in different spatial regions of the membrane (Fig. 2C and Movie 2):
At regions of low bulk height (approximately between 2 − 10 µm), one typically observes
chaotic patterns and standing waves, whereas traveling wave patterns emerge at regions of
large bulk height (> 10 µm). Furthermore, as in the simulation, we observe a sharp bound-
ary between regions that contain traveling wave patterns and regions that contain rather
chaotic and standing wave patterns, and this boundary establishes quickly within a few
minutes (Fig. S2 and Movie S2). Overall, the observations provide a striking verification of
the height-dependent patterns predicted in the simulations.

There are also some differences between the patterns in the experiment and in our
numerical simulations. First, while we observed occasional transitions from one pattern into
another in our experiments (Fig. S3 and Movie S3), these transitions occurred frequently
and were more pronounced in the simulations. This is explained by the lateral length
of the experimental setup, that is about an order of magnitude larger as compared to
the simulation setup, which is the main reason why we observe more frequent transitions
between different patterns in the simulations, as will become clear later. Second, in contrast
to the simulations, we noticed some homogeneous oscillations in the experiments, which
are characterized by large (homogeneous) density patches on the membrane (typically few
hundred micrometers in size) that oscillate with time (Figs. S3– S4 and Movies S3– S5). We
attribute this difference to the following: Due to the fabrication method of the microfluidic
flow chamber, both the bottom and top surface of the wedge were covered with a supported
lipid bilayer. In recent work, it has been shown that membrane-to-membrane crosstalk
(i.e., between top and bottom surface) is responsible for the emergence of homogeneous
oscillations [28]. In our simulations, however, we assume that Min proteins can only bind
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Fig. 2. Experimentally observed Min patterns in a wedge flow cell. (A) Schematic
presentation of the experimental setup. Both, the bottom and the top surface (glass
slides) are covered with a lipid bilayer. (B) Measurement of the bulk height profile of the
flow cell versus distance along the lateral length of the wedge. The height was measured
microscopically by z-stacks at multiple spots. (C ) Snapshot of the Min pattern along
the wedge, the picture was obtained by stitching individual adjacent images. Shown is a
merge of MinD (green) and MinE (red) channels. The bottom figure shows a kymograph
along the white dashed line as shown in the top figure.

to the bottom membrane, which explains why we do not observe homogeneous oscillations.
Taken together, we have a system that exhibits a fascinatingly rich transient dynamics

and involves patterns and transitions between them on multiple spatial and temporal scales.
We are therefore left with the key question: Can we explain the cause why different patterns
form in different spatial regions and how they transition from one to another over time?
Moreover, is it possible to identify and reduce the system to its essential degrees of freedom?

Instantaneous, local dispersion relations predict patterns

In previous theoretical work [14], the reconstituted Min system was investigated in a two-
dimensional rectangular geometry representing a slice through a three-dimensional in vitro
system, where the rectangle’s bottom edge represents the membrane surface (Fig. 3A).
Depending on the total densities of Min proteins, n̄D and n̄E and the bulk height H, it was
shown that the system establishes a variety of different patterns on the membrane such as
chaos, standing waves, and traveling waves [14, 28].

The analysis of pattern-forming systems usually starts with calculating the homogeneous
steady state m∗(H, n̄D, n̄E), c∗(H, n̄D, n̄E) and determining its stability. In particular, a
linear stability analysis of these homogeneous steady states yields the dispersion relation

7



that informs about the growth rate σ(q) of perturbations with a certain wavenumber q
(Fig. 2B).

In general, from the dispersion relation one can only determine the dynamics in the vicin-
ity of the homogeneous steady state. However, careful analysis of numerical simulations of
the Min system have interestingly also revealed a strong one-to-one correlation between
the dispersion relation and fully developed patterns in the highly nonlinear regime [14]: A
commensurability criterion between the unstable mode with the shortest wavelength qmax

and the fastest growing mode q∗ has been found that dictates the pattern type (Fig. 3C–E).
In short, it has been shown that qmax/q

∗ < 2 coincides with the regime of chemical tur-
bulence, whereas for qmax/q

∗ > 2 the system exhibits ordered patterns (standing/traveling
waves) [14]. Standing wave patterns are found close to the commensurability transition
qmax/q

∗ & 2, while traveling waves are found further away from the threshold [14]. Since
the form of the dispersion relation, and with it the commensurability ratio, depends on
parameters, this suggests that pattern formation is sensitive to the value of the total den-
sities and bulk height. Here we use this observed one-to-one correspondence between the
dispersion relation and patterns in the nonlinear regime to investigate pattern formation in
our system.

Let us consider the wedge as dissected into a collection of two-dimensional slices along
the direction of constant bulk height. Each slice corresponds to a rectangular geometry with
a bulk height that depends on the position of the slice in the wedge (see Fig. 3B). While
the bulk height is a fixed parameter for each slice, the average total densities 〈ñD,E〉y(t, x)
(Materials and Methods) in each slice are variable and depend on slice position x and
time t as the diffusive coupling between the slices redistributes mass. This generalizes
previous findings Ref. [14], where a two-dimensional geometry, with a rectangular bulk
and a membrane at the bottom edge (corresponding to a single, isolated slice through
the wedge geometry) was studied. To test whether the commensurability relation qmax/q

∗

also correlates with the pattern type in the wedge geometry, we extracted the average
total densities in each slice as a function of time from the numerical simulation. Based
on these densities we then performed the analysis illustrated in Fig. 3: We calculated the
instantaneous dispersion relation in each slice and extracted the the ratio qmax/q

∗ as a
function of slice position x and time t. The resulting pattern-type prediction is shown in
the space-time plot (kymograph) in Fig. 4A. Figure 4B shows the ratio qmax/q

∗ as a function
of slice position x for a set of representative times (cf. Fig. 3D). The pattern-type prediction
Fig. 4A is then obtained from these ratios via the mapping shown in Fig. 3D,E.

We find that this prediction correlates well with the patterns observed in the full numer-
ical simulation (Fig. 4C,D and Movie 3). In particular, the temporally changing position
xcrit(t) qmax/q

∗ = 2 (indicated by the green arrows and dashed lines in Fig. 4B and C) agrees
with the position along the wedge where traveling wave patterns transition to chaotic pat-
terns. In the vicinity of xcrit(t) we observe a band of standing waves as expected from the
“commensurability criterion” [14]. Since the the ratio qmax/q

∗ = 2 and with it the xcrit(t)
are entirely determined by the slice-averaged masses 〈ñD,E〉y(x, t), we conclude that these
masses are the essential degrees of freedom of the system on large scales.
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Fig. 3. (A) Rectangular geometry with membrane at the bottom edge representing
a slice through the three-dimensional in vitro system. (B) A slice through the wedge
geometry. For each such slice, at a given instance in time, we calculate the instantaneous
total densities, averaged along its length 〈ñD,E〉y(t, x), from the numerical simulation
data. From these slice-averaged total densities, we can then calculate the corresponding
local homogeneous steady state and its dispersion relation. (C ) Dispersion relation with
fastest growing mode q∗ and right edge of the band of unstable modes qmax indicated. The
ratio qmax/q

∗ has been empirically found to correlate with the type of the fully developed
pattern, with a sharp transition from chaotic patterns for qmax/q

∗ < 2 to ordered patterns
for qmax/q

∗ > 2. Close to the transition, standing waves are found, while travelling waves
form for larger ratios qmax/q

∗ [14]. (D) Mode ratio qmax/q
∗ as a function of the slice

position x for a given instance in time. The background shading indicates the type of
pattern expected from the “commensurability criterion.” (E ) Representative snapshots of
the three distinct pattern types: spatiotemporal chaos, standing waves (SW) and traveling
waves (TW).

Next, we ask whether one can find an approximate coarse-grained dynamics for these
redistributed masses. Such a description would enable us to predict the time evolution of
the redistributed masses independently from the full numerical simulations. One can then
use the commensurability criterion to predict the pattern types that will form in different
spatial regions as a function of the redistributed masses. In the next section we will show
how one can find such a description.

Large-scale dynamics is driven by redistribution of mass

In general, mass redistribution between different spatial regions of the wedge is caused
by diffusive fluxes due to concentration gradients. Similar as in the previous section, we
consider here the redistribution of mass between slices along the wedge (Fig. 3B). Since
membrane diffusion is by two orders of magnitude slower than bulk diffusion it may be ne-
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Fig. 4. (A) Kymograph showing the pattern-type prediction from the commensurability
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∗ = 2, indicating the
transition from chaotic to ordered patterns. Green arrows mark the position xcrit(t)
for the times indicated by dashed white lines. (B) Plots of the mode ratio qmax/q

∗,
determined from the local dispersion relation, as a function of spatial position x for
several representative times (dashed white lines in (A)). In the second to last row, the
entire domain is near the critical ratio qmax/q

∗ = 2, predicting the global emergence of
standing waves (see last row). (C ) Snapshots of the membrane patterns (MinD density,
cf. Fig. 1) from the full numerical simulation. The green dashed line indicates xcrit(t).
Note the standing wave patterns found near xcrit(t). Their fronts are aligned along the
bulk height gradient such that the sequence of wavenodes lies on lines of constant bulk
height. (D) Machine-learning based pattern classification using ilastik [30] (see Materials
and Methods).

glected, such that redistribution of protein mass between slices is governed by bulk diffusion
alone (Materials and Methods)

∂t〈ni〉y,z(x, t) ≈ Dc〈∂2
xci〉y,z +Dc

∂xH(x)
H(x) 〈∂xci〉y,z, (5)

for i = D,E. Here, the second term accounts for the spatial variation of the bulk height, and
thus the different volumes of neighboring slices between which the diffusive flux Dc〈∂xci〉y,z
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redistributes mass. This can be seen by rewriting Eq. (5) in the form of a continuity equation

∂t
[
H(x) · 〈ni〉y,z(x, t)

]
≈ −∂x

[
H(x) · Jdiff

i

]
(6)

with the diffusive fluxes given by Jdiff
i := −Dc〈∂xci〉y,z. Since the area of slices increases

along the positive x − direction, the diffusive fluxes Jdiff
i on the right-hand side of Eq. (6)

are rescaled by the bulk height H(x). These equations seem to be simple, but unfortunately
they are not closed, since the slice-averaged cytosolic densities 〈ci〉y,z(x, t) appear on the
right hand side.

We are interested in the dynamics of 〈ni〉y,z on timescales much longer than typical
oscillation periods of the patterns. Therefore, following the intuition gained from previous
works on MCRD systems [15, 31], we assume that one can approximate the slice-averaged
cytosol concentrations by the homogeneous steady-state concentration in each slice

〈ci〉y,z(x, t) ≈ c∗i (x, t) := c∗i
(
H(x), 〈nD〉y,z, 〈nE〉y,z

)
. (7)

This assumes that the spatial average over many wavelengths in y-direction is well ap-
proximated by the instantaneous homogeneous steady state in a slice. These steady state
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Fig. 5. (A,B) Kymographs showing the total-density ratio of MinE to MinD (E:D ratio)
from the full numerical simulation (A) and from local-equilibria based reduced dynamics
(B). (C ) Kymograph showing the pattern-type prediction using the commensurability
criterion based on the total densities from the reduced dynamics. Note the excellent
qualitative agreement to the pattern-type prediction based on total densities from the full
numerical simulation in Fig. 4A.
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concentrations only depend on the slices bulk height H(x) and the slice-averaged total den-
sities 〈ni〉y,z(x, t). Thus, the above approximation yields a closed set of equations for the
mass-densities

∂t〈ni〉y,z(x, t) ≈ Dc∂
2
xc
∗
i (x, t) +Dc

∂xH(x)
H(x) ∂xc

∗
i (x, t). (8)

We will call this the reduced dynamics in the following. Since the homogeneous steady
states may also undergo a saddle-node bifurcation, characterized by the emergence of three
steady states emerge (two stable, one unstable), this may lead to discontinuities in c∗i . To
regularize the dynamics, ci is not set identical to c∗i but relaxes towards it on a fast timescale
(see SI for details).

Given the initial densities 〈ni〉y,z(x, 0), one can numerically solve the reduced dynamics
Eq. (8) to predict the entire time evolution of the slice-averaged masses and hence the
dispersion relation at each point along the x − direction. Figure 5C shows the regional
pattern types predicted from the reduced dynamics. We find good qualitative agreement
for the distribution and transition of patterns as observed in the numerical simulations
(cf. Fig. 4A). The main difference to the full numerical simulations is a slight quantitative
deviation in the timescale, where the mass redistribution predicted by Eq. (8) is slightly
slower compared to the full numerical simulation. We also note that the reduced dynamics
predicts a larger region of no instabilities as compared to the numerical simulations (cf.
Figs. 4A and 5C). This is, on one hand, because the chaotic regime is rather narrow and close
to the regime for which the dispersion relation predicts no instability (cf. Figs. 3D and 4B).
In addition, since the patterns emerge from a subcritical bifurcation [14] (a generic property
of mass-conserving systems [15]), large amplitude patterns can be excited and maintained
even below the instability threshold.

Figure 5A,B compare the time evolution of the slice-averaged total densities from the
full numerical simulation and the solution obtained from the reduced dynamics. The colors
in the kymographs indicate the total density ratio of MinE and MinD (short, E:D ratio),
which is a key control parameter in the Min-protein dynamics [14].

Discussion

Multiscale patterns in biological systems often emerge from hierarchical systems, which are
organized in a modular fashion. Each level of the hierarchy instructs dynamics on the next
level which operates on a smaller spatial scale. For instance, along developmental trajecto-
ries of many organisms, upstream patterns such as maternal gradients instruct downstream
gene-expression patterns on increasingly smaller scales [32, 11]. Importantly, on each level
of the hierarchy, there is a clean separation between (spatially varying) control parameters
and dynamical variables.

In contrast, in the system we have studied here, there is no such separation as the
globally conserved total densities play a dual role: they are both dynamical variables and
act as control parameters [14, 15]. Building on this key feature has allowed us to explain and
predict the intriguingly complex patterns found in large-scale numerical simulations. The
values of the total densities of MinD and MinE locally control the pattern type: we showed
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that a “regional dispersion relation” calculated from the regional average densities reliably
predicts the pattern type. At the same time, concentration gradients in the bulk drive mass
redistribution of MinD and MinE. Therefore, the total densities are hydrodynamic variables
on large scales which control pattern formation on small scales. This separation of scales
enabled us to derive a reduced dynamics for the total densities on large spatial and temporal
scales which predicts the long-term dynamics of the system.

Notably, the dual role of total densities as dynamic variables and control parameters
also plays out at the small scale of the patterns themselves [14, 15]. Here, instantaneous
local total densities control local equilibria and their stability, which serve as proxies for the
local dynamics. The local dynamics cause gradients, which drive diffusive redistribution of
the total densities—in turn causing changes in the local dynamics. In the Min system, this
point of view has led to a detailed understanding of the emergence of chaos near onset and of
the transition to standing and traveling waves [14]. From a general perspective, the concept
of local equilibria controlled by total local densities is at the core of a number of recent
theoretical advances in the field of mass-conserving, pattern-forming systems [15, 31, 33, 8].

In addition to the dynamically changing total densities, the bulk height is also a (fixed)
heterogeneous control parameter in our system. The bulk height (or more generally volume-
to-surface ratio) is an important control parameter for bulk-surface coupled pattern-forming
systems [14, 28]. Here, the bulk height gradient of the wedge serves to induce spatiotemporal
heterogeneities in the total densities. Alternatively, one could induce heterogeneities in the
total densities via spatial gradients of the kinetic rates or by imposing a heterogeneous
initial condition in the total densities. However, these alternatives are difficult to realize
experimentally in a reproducible and controlled manner, which is the main reason why
we chose the wedge setup in this work. In a third scenario, large-scale gradients in the
densities may also emerge spontaneously and be maintained in the absence of “external”
heterogeneities. This is the case in systems with a long wavelength instability, such as
vibrated granular media [34, 35].

Since conservation laws are ubiquitous in many physical systems, we believe that our
approach can be generalized to a broad class of multiscale pattern-forming systems. For in-
stance, mass conservation is inherent to particle–based active matter systems. The local par-
ticle density controls emergent orientational order, i.e. local symmetry breaking [36, 37, 38].
In turn, orientational order controls mass redistribution due to the particles’ self-propulsion.
Thus, the particle density again plays a dual role as a control parameter and a dynamic vari-
able [38, 39, 40]. The dynamic interplay of mass redistribution and orientational order has
been shown to give rise to coexistence of different macroscopic order (polar flocks, nematic
lanes) and the interconversion between them [38], not unlike the coexistence and intercon-
version of different patterns we found for the reaction–diffusion system studied in this work.
One way to induce spatial heterogeneities in these systems is to introduce a gradient of sig-
naling chemicals (chemoattractants) that affect the local velocity of active particles. This
would dynamically lead to redistribution of the particle densities on large scales. Since the
particle densities, in turn, are themselves control parameters locally, non-trivial multiscale
dynamics may emerge in such a setup. Exploring the effects of such gradients in active
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matter systems could be therefore an exciting task for future research.
Beside mass-conserving systems, there is also a number of studies on Turing patterns

in domains with spatially varying model parameters (kinetic rates [41, 42] or diffusion
coefficients [43]). For one-dimensional models, one can derive an instability criterion for
distinct sections of the domain by determining the (local) growth rates of perturbations
[41]. This is similar to our approach, where we identified (regional) patterns from the
dispersion relation and the resulting commensurability criterion in each slice along the
wedge geometry. In these studies on classical Turing models, there is a strict separation
between (heterogeneous) control parameters and dynamical variables, i.e. they can be seen
as hierarchical systems like those discussed above. Going forward, it would be interesting to
dynamically couple control parameters in these models to another pattern-forming system
in order to drive transient multiscale patterns, similar to this work.

Our work relied on a relation between regional parameters (average total densities) and
regional pattern types. A systematic understanding of this commensurability criterion is still
lacking, leaving an interesting task for future research. As an alternative one might go in the
opposite direction forgoing mechanistic insight and instead relying on machine learning, for
instance. A large number of small scale simulations could be used as training data to “learn”
a relationship between parameters and pattern type. This learned relationship could then
be combined with an effective dynamics describing the redistribution of mass, where the
masses enter as spatiotemporally varying parameters. Specifically one could train a neural
network to learn an relation between the slice-averaged total densities and slice-averaged
cytosolic densities that can be substituted in Eq. (6) to obtain a closed set of equations for
the redistribution of mass between slices. Such “physics-informed neural networks” have
received significant attention in recent years [44, 45, 46]. Mass conservation is an important
and ubiquitous physical constraint that might help to further develop physics-informed
machine learning approaches in future work.

On a broader perspective, our work showed that spatiotemporal patterns at small scales
can be reconstructed from the reduced dynamics at large length and time scales (mass
redistribution). We believe that our approach can be generalized and applied to other
multiscale systems with an underlying conservation law, such as transport processes in
porous media, combustion, and cell migration, to name a few examples. The possibility
of obtaining information about the dynamics at the small scales from the coarse-grained
description at large scales opens a new avenue to gain insight into the underlying principles
of such systems.
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Materials and Methods

Mathematical model

We adopt the Min “skeleton model” introduced in Refs. [47, 48, 5] which is known to qual-
itatively reproduce Min patterns in vivo and in vitro [48, 5, 28]. The governing equations
are given in the main text, Eqs. [1]–[3]. The membrane reactions are

r =
[
ron

D − ron
E , ron

E − roff
DE

]>
, (9)

with

ron
D = (kD + kdDmd)cDT , (10a)

ron
E = kdEmdcE , (10b)

roff
DE = kdemde . (10c)

The reaction terms account for MinD attachment and self-recruitment to the membrane,
MinE recruitment by MinD, and dissociation of MinDE complexes with subsequent de-
tachment of both proteins into the cytosol, respectively. Coupling between cytosol and
membrane is established by reactive boundary conditions at the membrane [cf. Eq. (3)].
The boundary fluxes are given by

f =
[
roff

DE,−ron
D , roff

DE − ron
E

]>
, (11)

which follows from mass conservation. For analytical caclulations we adapt the following
change of variables as it is more convenient: We describe the bulk dynamics of MinD in
terms of the variables cD = cDD + cDT and cDD, i.e. in this case one defines the bulk
concentration vector c = (cD, cDD, cE). The membrane reaction in Eq. (10a) is then slightly
modified by substituting cDT = cD − cDD, and the boundary fluxes are given by

f =
[
−ron

D , roff
DE, r

off
DE − ron

E

]>
. (12)

The model parameters used in this study are summarized in Table 1.

Table 1. Min model parameters

Parameter Symbol Value

Bulk diffusion Dc 60 µm2 s−1

Membrane diffusion Dm 0.013 µm2 s−1

Average total MinD density n̄D 665 µm−3

Aveage total MinE density n̄E 410 µm−3

Attachment rate kD 0.065 µm s−1

MinD recruitment rate kdD 0.098 µm3 s−1

MinE recruitment rate kdE 0.126 µm3 s−1

MinDE dissociation rate kde 0.34 s−1

Nucleotide exchange λ 6 s−1
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Numerical simulation

To investigate the dynamics of the system, we performed 3D finite element (FEM) simu-
lations using the commercially available software COMSOL Multiphysics v5.6. Numerical
simulations were performed for a wedge geometry with lateral length L = 500 µm and bulk
height H(x) linearly increasing from H0 = 5 µm to H1 = 50 µm. The simulation was ini-
tialized with the Min proteins uniformly distributed in the bulk and a small random spatial
perturbation around this uniform state.

Homogeneous steady state and dispersion relation

The homogeneous steady state concentrations, (c∗|z=0(H, n̄D, n̄E), m∗(H, n̄D, n̄E)) are ob-
tained from the stationary solutions of Eqs. (1)–(3) together with the mass conservation
condition Eq. (4): 

r(c∗|z=0,m
∗) = 0,

f
(
c∗|z=0,m

∗) = Φ,

c∗D|z=0 + (m∗d +m∗de)/H = n̄D,

c∗E|z=0 +m∗de/H = n̄E,

(13)

where Φ denotes the steady state fluxes at the membrane, given by:

Φ = [0, φ, 0]> , (14a)

φ :=
√
Dcλ tanh

(√
λ/DcH

)
c∗DD|z=0. (14b)

A concise derivation of these equations and how they can be solved is provided in the
Supplementary Information. For a thorough presentation of the linear stability analysis of
the Min system in a 2D rectangular geometry we refer to the Supplementary Informations
of Refs. [14] and [28].

Operators for spatial averaging

The operators used throughout this study to calculate mean values of densities on the
membrane and in the cytosol are defined as follows:

〈m〉S := |S|−1

∫
S

dxdym, (15a)

〈c〉V := |V|−1

∫
S

dxdy

∫ H(x)

0
dz c, (15b)

〈·〉y :=
1

L

∫ L

0
dy (·), (15c)

〈·〉y,z :=
1

H(x)

∫ H(x)

0
dz 〈·〉y, (15d)

where the membrane surface area and the bulk volume for the wedge geometry are explicitly
given by |S| = L2 and |V| = L2 (H0 +H1)/2.

16



Instantaneous total densities at the membrane

Since only cytosolic proteins in close proximity to the membrane participate in the nonlinear
dynamics at the membrane, we define instantaneous total densities at the membrane:

ñD(x, y, t) :=
1

H(x)
(md +mde) + cD|z=0 , (16a)

ñE(x, y, t) :=
1

H(x)
mde + cE|z=0 . (16b)

We further averaged these densities along the y–direction to obtain the the slice-averaged
total densities 〈ñD,E〉y(x, t). Note that the length of a slice is much larger than the typi-
cal pattern wavelength, which also permits to approximate the slice-averaged mass at the
membrane by the vertically averaged mass: 〈ñi〉y(x, t) ≈ 〈ni〉y,z(x, t) (see Ref. [14]). This
is because the local deviations ñi − 〈ni〉z largely cancel when averaging over the pattern
wavelength.

Mass redistribution dynamics

Here, we provide more details on the derivation of the mass redistribution dynamics Eq. (6).
For specificity, we present the calculation for MinD. The calculation for MinE works along
the same lines. Our starting point is the slice averaged total MinD density:

〈nD〉y,z(x, t) :=
1

H(x)

〈
md +mde +

∫ H(x)

0
dz cD

〉
y

. (17)

The time evolution of this quantity then follows from Eq. (1) and Eq. (2):

H(x) ∂t〈nD〉y,z(x, t) = Dm∂
2
x〈md +mde〉y

+Dc∂z〈cD〉y
∣∣
z=H(x)

+

∫ H(x)

0
dz Dc∂

2
x〈cD〉y, (18)

where we used the reactive boundary condition Eq. (3) to rewrite the integral:∫ H(x)

0
dz Dc∂

2
zcD = Dc∂zcD

∣∣
z=H(x)

−Dc∂zcD

∣∣
z=0

= Dc∂zcD

∣∣
z=H(x)

+ roff
DE − ron

D . (19)

Note that due to mass-conservation the reaction terms at the membrane cancel.
Since the system is closed, the boundary condition at the inclined top surface of the

wedge reads n · ∇cD|z=H(x) = 0, where n ∝ (−∂xH, 0, 1) is the outward normal vector at
the top surface. Writing out the boundary condition explicitly, we find that:

∂zcD|z=H(x) = (∂xH) ∂xcD|z=H(x). (20)

17



To proceed, we substitute the relation above into Eq. (18) and slightly rewrite the resulting
equation by applying the chain rule:

H(x) ∂t〈nD〉y,z(x, t) = Dm∂
2
x〈md +mde〉y + ∂x

∫ H(x)

0
dz Dc∂x〈cD〉y︸ ︷︷ ︸

=: −H(x)JD(x)

. (21)

Here, the first term describes diffusion of the averaged membrane concentrations. The
integral on the right describes diffusion of the averaged cytosolic densities, where we defined
the diffusive flux JD = −Dc〈∂xcD〉y,z. The factor H(x) in the cytosolic diffusion term
accounts for the increasing area of the slice along the positive x–direction.

Since protein diffusion on the membrane is much smaller than cytosolic diffusion Dm �
Dc [49, 50], one can neglect membrane diffusion to arrive at the result shown in the main
text (Eq. (6)). For completeness, note that Eq. (21) (without membrane diffusion) can be
recast as

∂t〈nD〉y,z(x, t) ≈
1

H(x)
∂x

∫ H(x)

0
dz Dc∂x〈cD〉y,

= Dc∂x〈∂xcD〉y,z +Dc
∂xH(x)

H(x)
〈∂xcD〉y,z, (22)

which is the form given in Eq. (5) in the main text.

Machine-learning based pattern classification

We used the pixel classifier provided by the software ilastik [30]. The classifier was trained
based on a few representative snapshots, by manually marking areas where the pattern type
(no pattern, chaos, standing wave, or traveling wave) is easily identified by visual inspection.
The trained classifier then yields probabilities for each pattern type at each pixel. The
classifier was applied to snapshots in 20 s intervals. This data was then downsampled and
averaged over slices to yield an x–t space time map of pattern probabilities. To render the
kymograph in Fig. 4D each pixel was colored based on the most probable pattern.

Preparation of the wedge flow cell

The microfluidic wedge chambers were prepared using two rectangular cover slips (bottom
one of dimensions 22/50 mm, and top one of dimensions 5/30 mm). Close to one of the short
edges of a top glass a tiny inlet hole was drilled using a sandblaster. Cover slips were cleaned
in 1 M KOH for 1 h followed by a methanol bath for 10 min in a sonicator bath. Surfaces
of the cover slips were activated with oxygen plasma for 20 s, using oxygen plasma PREEN
I (Plasmatic System, Inc.) with a O2 flow rate of 1 SCFH. Furthermore, a small PDMS
slab with a 0.3 mm hole was attached on to the top glass slide, such that it matches the
hole in the PDMS glass slide and a metal connector was inserted in the hole for connecting
the syringe pump. Tilt of the top glass slide was achieved by placing a piece of aluminum

18



foil between the top and bottom slide at the end, with the largest height between top and
bottom at the side of the inlet. At the opposite side with the smallest distance between top
and bottom slide, 2 µm polystyrene beads that were deposited on the bottom slide provided
an outlet and prevent a collapse of the top and bottom slides (see Fig. 2). The lateral sides
of the microchamber were sealed with a two-component epoxy resin leaving the short edge
at the low height-side open for liquid flow (Fig. S4). The microfluidic cell was then filled
with a solution of small unilamellar vesicles (SUVs) through an injection tube at the inlet
of the PDMS slab and incubated for 30 min at 30 °C–yielding full lipid membrane coverage
of the bottom and top slides. SUVs were prepared as described in Ref. [28]. Subsequently,
the flow cell was thoroughly washed with a buffer to remove excess SUVs and Min protein
experiments were started.

Observation of Min patterns

We purified the Min proteins based on the method proposed in Ref. [51]. Injection of Min
proteins into the flow cells was performed through a syringe pump containing a solution
of 0.8 M MinD, 0.2 mM MinD-Cy3, 0.8 mM MinE, 0.2 mM MinE-Cy5, 5 mM ATP, 4 mM
phosphoenolpyruvate, 0.01 mg/ml pyruvate kinase, 25 mM Tris-HCl (pH 7.5), 150 mM KCl
and 5 mM MgCl2. To ensure that all of the buffer solution in the microdevice is replaced
by the protein solution, we chose a volume of the protein solution that was 50 times larger
than the volume in the microdevice. During the filling process of the microdevice, the enire
solution was rapidly injected (in 5 s) to prevent protein accumulation on the membrane.

For the generation of the fluorescence images, we used the following equipment: Olympus
IX-81 inverted microscope equipped with an Andor Revolution XD spinning disk system
with FRAPPA, illumination and detection system Andor Revolution and Yokogawa CSU
X1, EM-CCD Andor iXon X3 DU897 camera, motorized x-y stage and a z-piezo stage,
using a 20x objective (UPlansApo, NA 0.85, oil immersion). Imaging of MinD-Cy3 and
MinE-Cy5 was performed with laser spectral lines at 561 nm and 640 nm, respectively, and
we further used a 617/73 band-pass filter as well as a 690 long-pass filter. We imaged several
uniformly sized regions at intervals of 30 s or 60 s along the lateral length of the wedge
setup. To exclude membrane imperfections that may have arisen during preparation, we
also imaged the membrane using the spectral line at 491 nm and a 525/50 band-pass filter.

Image sequence processing

We processed the fluorescence images using the following software packages: Andor iQ3
v3.1, ImageJ 1.52j, and custom written Matlab 2016a scripts. For better visualization, we
additionally applied background correction and filtering of artifacts. In detail, these were
carried out as follows: For the generation of the movies, each frame was first corrected for
fluorescence bleaching (max. 20 % decay of the intensity for long movies) by normalizing to
the mean intensity of the respective frame. Then, we generated two different modifications
of the images: First, we averaged out all transient features (i.e., patterns) in the frames to
obtain ‘static background’-images which we shall call Imstat. Second, we smoothed out
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the images, determined the average of all movie frames, and normalized the corresponding
result with respect to its maximum. This way, we obtained an ‘illumination correction’
image Imillum. In the final step, each frame Immovie was corrected according to the rule
Imcorrected = (Immovie - Imstat)/Imillum. On one hand, this ensures that irregularities
in each image are suppressed, and on the other hand, the intensity amplitudes at the edges
becomes comparable with the values at the center of the image.
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