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Nanopores as single-molecule biosensors were initially 
developed for ultrasensitive DNA sequencing and other 
label-free biomolecular sensing techniques1–5. They register 

geometrically confined single molecules that bind within or trans-
locate through their interior volumes to allow label-free sensing6. 
In a typical nanopore measurement, individual analytes enter the 
nanopore under an applied potential, which alters the flow of ions 
through the nanopore and is reflected in a time-dependent current 
recording. By analysing the modulation of the ionic current in terms 
of the blockade amplitude, duration and frequency, nanopores 
have been applied to the stochastic sensing and characterization of 
DNA7–10, RNA11, peptides12,13, proteins14,15, metabolites and protein–
DNA complexes16 at the single-molecule level. In particular, the 
success of nanopore-based DNA/RNA sequencing has stimulated 
many potential applications in a relatively simple, high-throughput 
and label-free format.

Ideally, the nanopore dimensions should be comparable to those 
of the analyte for the presence of the analyte to produce a measur-
able change in the ionic current amplitude above the noise level. 
Nanopores can be formed in several ways, with a wide range of pore 
diameters. Biological nanopores are formed by the self-assembly 
of either protein subunits, peptides or even DNA scaffolds in 
lipid bilayers or block copolymer membranes1,3,6,17,18. They possess 
atomically precise dimensions controlled by biopolymer sequences, 
providing the ability to recognize biomolecules with constriction 
diameters of ~1–10 nm. Solid-state nanopores are crafted in thin 
inorganic or plastic membranes (for example, SiNx), which allows 
the nanopores to have extended diameters of up to hundreds of 
nanometres, permitting the entry or analysis of large biomolecules 
and complexes. The tools for fabricating solid-state nanopores, 
which include electron/ion milling4,5, laser-based optical etching19,20 
and the dielectric breakdown of ultrathin solid membranes21,22, can 
be used to manipulate nanopore size at the nanometre scale, but 

allow only limited control over the surface structure at the atomic 
level in contrast to biological nanopores. The chemical modification 
and genetic engineering of biological nanopores, or the introduc-
tion of biomolecules to functionalize solid-state nanopores23, can 
further enhance the interactions between a nanopore and analytes, 
improving the overall sensitivity and selectivity of the device2,17,24–26. 
This feature allows nanopores to controllably capture, identify and 
transport a wide variety of molecules and ions from bulk solution.

Nanopore technology was initially developed for the practicable 
stochastic sensing of ions and small molecules2,27,28. Subsequently, 
many developmental efforts were focused on DNA sequencing1,7–9. 
Now, however, nanopore applications extend well beyond sequenc-
ing, as the methodology has been adapted to analyse molecular 
heterogeneities and stochastic processes in many different bio-
chemical systems (Fig. 1). First, a key advantage of nanopores lies 
in their ability to successively capture many single molecules one 
after the other at a relatively high rate, which allows nanopores 
to explore large populations of molecules at the single-molecule 
level in reasonable timeframes. Second, nanopores essentially con-
vert the structural and chemical properties of the analytes into a 
measurable ionic current signal, even achieving enantiomer dis-
crimination29. The technology can be used to report on multiple 
molecular features while circumventing the need for labelling 
chemistries, which may complicate the overall analysis process and 
affect the molecular structures. For example, nanopores can dis-
criminate nearly 13 different amino acids in a label-free manner, 
including some with minute structural differences30. An important 
aspect is the ability of nanopores to identify species31 that lack suit-
able labels for signal amplification or whose information is hid-
den in the noise of analytical devices. Consequently, nanopores 
may serve well in molecular diagnostic applications required for 
precision medicine, which achieves the identification of nucleic 
acid, protein or metabolite analytes and other biomarkers11,32–35. 
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single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs 
and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing. In this Review, 
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Third, nanopores provide a well-defined scaffold for controllably 
designing and constructing biomimetic systems, which involve a 
complex network of biomolecular interactions. These nanopore 
systems track the binding dynamics of transported biomolecules as  
they interact with nanopore surfaces, hence serving as a plat-
form for unravelling complex biological processes (for example, 
the transport properties of nuclear pore complexes)36–39. Fourth, 
chemical groups can be spatially aligned within a protein nano-
pore, providing a confined chemical environment for site-selective 
or regioselective covalent chemistry. This strategy has been used 
to engineer protein nanoreactors to monitor bond-breaking and 
bond-making events40,41.

Here we discuss the latest advances in nanopore technologies 
beyond DNA sequencing and the future trajectory of the field, as 
well as the opportunities and main challenges for the next decade. 
We specifically address the emerging nanopore methods for protein 
analysis and protein sequencing, single-molecule covalent chemis-
try, single-molecule analysis of clinical samples and insights into the 
use of biomimetic pores for analysing complex biological processes.

Characterization of single proteins with nanopores
Academic efforts are now shifting towards studying proteins after 
the spectacular success of nucleic acid sequencing using nanopore 
technology. As organisms such as ourselves support millions of  
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Fig. 1 | Nanopore technologies beyond DNA sequencing. Four areas of research in which nanopores have great potential to contribute to new knowledge 
and new technologies are shown. The protein structure is from https://www.rcsb.org/structure/6DCW.
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different proteins, the challenges in proteomics involve identifying 
the proteins, quantifying their abundance and characterizing the 
choreography of the post-translational modifications that under-
lie their function. Several approaches to protein identification are 
being explored.

Folded proteins have been sensed using solid-state42,43 and bio-
logical44–46 nanopores. Properties such as protein volume, dipole 
and shape can be inferred by analysing the translocation dynam-
ics of proteins through solid-state nanopores47,48, indicating that 
nanopores are useful for extracting the generic properties of pro-
teins. Alternatively, ligands such as biotin14, aptamers45,49, pro-
tein domains50 or antibodies51,52 can directly attach to biological 
nanopores even in the presence of complex media, such as serum  
(Fig. 2a). Moreover, proteins can be identified using DNA carri-
ers modified with protein-specific binders as they translocate into 
nanopores53,54. Beyond characterizing single proteins, nanopore 
arrays or specific fractionation protocols will most probably be 
required to address the complexity of proteomes.

Work is underway to use biological nanopores to detect single 
peptides or proteins as an alternative to mass spectrometry, the 
workhorse of proteomic analysis. Following initial work with model 
peptides12,13,55,56 and post-translational protein modifications57, it 
has been reported that, as observed previously for polyethylene gly-
col (PEG) molecules58, peptide signals are related to their volume59,60 
(and hence to a first approximation to the peptide molecular 
weight). Although the interactions between peptides and nanopores 
are likely to play an important role for a given class of nanopore26, 
other important properties of peptide, such as hydrophobicity, 
charge or folds, should be revealed instead. Another considerable 
step in this field of research was the realization that by lowering the 
pH to less than 4, most peptides can be nearly uniformly charged 
and captured irrespective of their chemical composition61, although 
an electro-osmotic flow was manipulated to capture peptides with 
a different net charge at near-physiological pH62. Based on peptide 
volume recognition, a single-molecule protein identifier has been 
proposed in which a protease is placed directly above a biological 
nanopore, and the fragmented peptides are sequentially read by a 
nanopore sensor (Fig. 2b)63. Initial steps to integrate a peptidase 
with a protein nanopore have been made63.

However, the ideal approach to nanopore proteomics would be 
de novo protein sequencing, where proteins are unfolded, linearly 
translocated across a nanopore amino acid by amino acid, and indi-
vidual amino acids are recognized by specific current signatures. 
Using biological nanopores, several laboratories have observed the 
differences in single amino acids in either peptides61,64,65 or stretched 
polypeptides57,66. Therefore, at least a subset of amino acids or 
post-translational modifications should be addressable by nanopore 
current measurements. Attempts have also been made to control 
the translocation of linearized proteins using unfoldases—enzymes 
that unfold proteins using adenosine 5′-triphosphate as fuel67,68. In 
a proof-of-concept example, controlled transport was facilitated by 
the ClpXP unfoldase–protease pair, which was used to pull on pro-
teins prethreaded through an α-haemolysin nanopore. The narrow 
entry of the nanopore was then used as a sieve to forcefully unfold 
the proteins (Fig. 2c)68. Differences in proteins or modifications that 
affect the folded state of the protein have been reported. Another 
approach used a proteolytically inactivated proteasome—a cylin-
drical multicomplex system that degrades proteins—genetically 
fused atop a β-barrel protein nanopore63. The proteasome acted as a 
docking station for an unfoldase, which would then feed unfolded 
protein to the proteasome chamber and eventually through the 
nanopore. Both approaches require further developments, either to 
reduce the electrical signal generated by the unfolding process at the 
mouth of the nanopore68 or to control the stretching of the proteins 
as they translocate through the nanopore63. Recent works seem to 
have led to a breakthrough in peptide sequencing. Thus, it has been 

reported that a DNA helicase was used to ratchet a DNA–peptide 
hybrid molecule through a nanopore, and single amino acid sub-
stitutions from negatively charged peptides were detected in indi-
vidual peptides69–71.

In addition to identifying proteins, nanopores can be used as 
single-molecule sensors to characterize protein activity, dynam-
ics and conformational changes. Among the unique advan-
tages of nanopores is their ability to sample native proteins at the 
single-molecule level with microsecond resolution and no intrinsic 
limitation on the observation period. In the first implementations of 
nanopore enzymology, biological nanopores were used to monitor 
the formation of the products of bulk enzymatic reactions72,73, which 
might be useful when a straightforward spectroscopic assay is not 
available. However, this approach does not allow the activities of 
individual enzymes to be determined. The latter was first achieved 
by following the enzymatic ratcheting of a DNA strand across a 
nanopore in real time9,74, a method developed for DNA sequenc-
ing applications. For example, these studies revealed that Hel308 
helicase moves a distance corresponding to half a DNA base dur-
ing nucleotide binding and half a base during nucleotide hydrolysis, 
and that the motor proteins of Phi29 DNA polymerase and Hel308 
occasionally backstep while incorporating nucleobases or moving 
along DNA. Another approach has been used to monitor enzyme 
binding to the nanopore itself. Previous studies observed conforma-
tional changes in GroEL binding to a GroES nanopore75, or kinases 
binding or phosphorylating a peptide that is introduced within the 
transmembrane region of a nanopore76. However, the relatively 
complex engineering of nanopores is likely to limit this approach to 
bespoke examples.

A more generic approach is to temporarily trap a protein inside 
a biological nanopore. Conformational changes or dynamics can 
then be obtained through changes in the nanopore signal (Fig. 2d).  
Proteins of 20–65 kDa can be captured by electro-osmotic flow 
within asymmetric biological nanopores with relatively large 
diameters of >3 nm, such as engineered cytolysin A (ClyA)45 or 
two-component pleurotolysin (PlyAB)46, for variable periods. 
Notably, at moderate voltages (<150 mV), no evidence of protein 
unfolding was observed77. Ligand-induced conformational changes 
for a range of proteins78–80 have been reported using biological nano-
pores. These include the tiny conformational changes of dihydrofo-
late reductase (DHFR) during ligand binding80 and catalysis81, which 
could not be observed previously by single-molecule fluorescence 
resonance energy transfer experiments. The results of these studies 
revealed that DHFR exists in multiple fixed conformations—con-
formers—whose exchange during catalysis is probably used to tune 
enzyme efficiency80,81.

Solid-state nanopores have also been used to sample protein 
conformations82. However, the fast transport across nanopores 
often prevents multiple exchanges within single enzymes. This 
limitation has been addressed recently. In one example, a protein 
stopper was introduced to immobilize a biotinylated peptide inside 
a nanopore, allowing the measurement of multiple conformational 
transition pathways (Fig. 2e)83. In another recent report, a DNA 
lid was added to one side of a lipid-coated nanopore, and proteins 
were added to the opposite side (Fig. 2f)84. The electrophoretic force 
allowed the DNA origami sphere to cover the nanopore, and the 
induced electro-osmotic flow was used to trap a range of different 
proteins on the opposite side. Multiple conformational transitions 
of the individual chaperone Hsp90 protein could be observed using 
this so-called nanopore electro-osmotic trap (NEOtrap).

Single-molecule chemistry within biological nanopores
Single-molecule sensing generally involves non-covalent interac-
tions3. Advances in this area suggest that covalent chemistry may 
be examined in a similar manner, and indeed the bond-making 
and bond-breaking events of individual molecules attached to the 
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interior wall of a nanopore can be analysed on the basis of their 
modulation of the ionic current40. Biological nanopores engineered 
to contain reactive sites are referred to as protein nanoreactors.

Examples include many aspects of the chemistry of thiols intro-
duced as cysteine side chains85. Groups other than thiols can be 
examined after they have been introduced by site-directed chemical  
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modification86 or as non-canonical amino acids incorporated by 
native chemical ligation87. The nanoreactor approach has been used 
to examine various aspects of photochemistry88, unravel the stereo-
chemical course of transformations85, observe polymerization step 
by step89 and monitor a primary isotope effect90. Catalytic cycles 
have been reconstituted by sampling partial reaction sequences 
in a nanopore after extricating intermediates from solution91, and 
reaction networks of considerable complexity that would be hard to 
deconvolute by NMR spectroscopy have been disentangled85.

The strengths and weaknesses of the nanoreactor approach with 
regard to single-molecule covalent chemistry must be considered. 
On the plus side, no tagging of reactants is required. As the pores 
formed by bacterial proteins are generally highly stable, a wide 
range of pH values, salt concentrations and temperatures92 can be 
used. However, so far, only aqueous chemistry has been examined. 
Both irreversible and reversible chemistry have been explored, and 
because there are two compartments in a bilayer set-up, incom-
patible spatially separated reactants can be used93. Attachment to 
the wall of the lumen is required to prevent diffusion out of a pore 
during a reaction sequence and to prevent kinetic complications, 
such as the dimerization of intermediates87. If repeated turnover 
at a defined site is considered to be catalysis, examples have been 
observed93, but further progress in the use of nanopores to alter 
the course and rate of reactions is expected. Computer analysis 
of the frequency and lifetime of current states produces reaction 
schemes and kinetic constants for covalent chemistry with time 
resolutions that can reach the 100-µs range94. In general, the stan-
dard deviations of rate constants are more than ±5%, which can be 
limiting—for example, only large isotope effects can be detected90. 
While the nanoreactor approach provides a single-molecule reac-
tion trajectory in which all steps are visible whether or not they are 
rate-limiting, the molecular identification of intermediates can be 
problematic, as in any single-molecule approach.

In early work, the kinetics of covalent chemistry within a nano-
reactor were assumed to approximate the kinetics of ensemble 
reactions in bulk solution, and this is roughly correct for small 
molecules40. More recently, interest has turned to considerations 
of how the environment within a nanopore, notably confinement, 
neighbouring groups and chirality, can affect chemistry, especially 
that of polymers, and how electrophoresis and electro-osmosis95 
can drive reactants into and out of pores. To enable the chemical 
manipulation of a polymer, its translocation through a nanoreactor 
can be arrested by either a terminal protein stopper or covalent link-
age to the internal wall (Fig. 3a). In the presence of a pulling force 
imposed by either electrophoresis or electro-osmosis, the polymer 
will extend and elongate within the tubular structure. Additional 
force is exerted as the polymer emerges from confinement and 
regains conformational entropy. Two features of nanopore confine-
ment are advantageous for chemical manipulation. First, reactive 
groups spatially separated along the polymer chain can be aligned 
with inward-facing reactive side chains. Second, the direction of 
the pulling force on a covalently attached polymer, and thereby 
the polymer’s orientation, can be switched by reversing the applied 
potential, resetting the chemical landscape.

Alignment within a nanoreactor has been exploited to effect 
selective chemistry under confinement96. As a proof of concept, 
the interchange between disulfides in polymer backbones and 
cysteine thiols at different positions within a nanopore was exam-
ined (Fig. 3b). The turnover of polymer substrates was enabled by 
using a competing small-molecule reductant (1,4-dithiothreitol). 
Site selectivity was assessed as the fraction of a particular polymer 
that reacted at a particular location within a nanoreactor. The regi-
oselectivity between two chemically equivalent sulfur atoms in a 
disulfide was determined by observing the characteristic currents 
associated with each reaction product. Both site selectivity and regi-
oselectivity showed strong dependence on the locations of the cyste-

ines in the nanopore and the disulfides in the polymer. This strategy 
might be adapted to other synthetic tubular nanosystems, such as 
metal–organic frameworks, to facilitate site-selective or regioselec-
tive chemistry.

The selective chemistry promoted by confinement has been 
further developed into a processive molecular machine97, a ‘hop-
per’ that moves along a cysteine track within a nanopore while 
carrying a DNA cargo (Fig. 3c)98. The hopper takes subnanometre 
steps through consecutive thiol–disulfide interchange reactions. 
Reactions producing backwards motion are strongly disfavoured 
when there is a pulling force on the DNA, endowing the hopper 
with remarkable directionality. External control of the applied 
potential reorients the DNA within the nanopore and thereby resets 
the direction of hopping and the endpoint of the process. Hopping 
is highly processive98 and may provide a chemical alternative to the 
enzymatic ratchets used in sequencing technologies, if longer tracks 
can be provided, for example, on a patterned surface99. Furthermore, 
this process could be applied to polypeptides and polysaccharides, 
as well as nucleic acids.

Synthetic nanopores for mimicking biological systems
While nanopores understandably attract the most attention for their 
use in sequencing and bioanalytical applications, they also offer 
exciting opportunities to study questions that arise in cell biology. 
Cells feature a wide variety of nanometre-sized pores within their 
membranes (Fig. 4a) that act as gateways for molecular transport 
between compartments. For example, the flow of ions and small 
molecules (such as adenosine 5′-triphosphate) is regulated by ion 
channels and transporters, with crucial roles in homoeostasis, 
energy production, cellular communication and sensory transduc-
tion100. Larger pores, such as the mitochondrial translocase101 and 
the nuclear pore complex (NPC)102, are responsible for regulating 
the transport of proteins and RNAs between cellular compart-
ments. However, other examples include the SecYEG protein secre-
tion pore103, the ClpXP protease104 used for protein degradation, 
the ceramide pores involved in cellular apoptosis105, pore-forming 
toxins such as α-haemolysin106 and the viral motor protein for the 
packaging of DNA107. Biomolecular transport across all these pores 
poses many mechanistic questions, which often can be studied by 
extracting pores from the cell and docking them within a planar 
lipid membrane for the in vitro characterization of their transport 
properties. However, the high complexity of the pores, such as 
NPCs, prevent such a reconstitution approach.

With recent advances in solid-state nanopores23, protein nano-
pore engineering6,40 and DNA nanotechnology108, it is now pos-
sible to build artificial systems that recapitulate the functionality 
of biological pores in vitro. There are many examples of engi-
neered nanopore-based systems that can act as minimal mimics, 
including asymmetric solid-state nanopores for the realization of 
ion pumps109, and ion-gated110 and pH-gated111 pores that mimic 
switchable ion channels. Other notable biomimetic nanopore sys-
tems include synthetic DNA origami pores for the reconstitution of 
synthetic ligand-gated ion channels38 or highly efficient lipid scram-
blases112, while biological nanopores have been designed to mimic 
passive113 or active114 membrane transporters115. Beyond reproduc-
ing the behaviour of biological channels, such biomimetic pores 
have great potential for enhancing our understanding of complex 
biological processes that cannot be probed directly in vivo.

A notable example is the NPC, a large (~52 MDa in yeast116) mul-
tiprotein complex that forms large pores (~40 nm) within the nuclear 
envelope to regulate all molecular traffic in and out of the nucleus 
(Fig. 4b). Although much is known about its biological function117, a 
solid understanding of its transport properties is lacking. In fact, the 
astounding complexity of the in vivo environment, combined with 
the fact that the central channel of the NPC is composed of intrinsi-
cally disordered proteins, prevents the elucidation of a full mecha-
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nistic picture of nuclear transport. The NPC conduit is filled with a 
‘spaghetti-like’ mesh of intrinsically disordered proteins, called FG 
nucleoporins (FG-Nups), rich in F and G amino acid repeats, which 
are the key elements of gatekeeper function. While small molecules 
can freely pass, larger cargo (>40 kDa proteins or messenger RNA) 
is blocked unless it is bound to nuclear transport receptors, which 
can actively partition into the FG-Nup mesh. The basis for such 
selectivity is still debated, and many open questions remain, for 
example, with regard to the spatial arrangement of FG-Nups and 
whether nuclear transport receptors partake in establishing a selec-
tive barrier beyond being mere transporters of cargo. The NPC is a 
prime example of a system where biomimetic nanopores could help 
to disentangle these major mechanistic questions.

Biomimetic NPCs have been developed in the past decade. 
The 30-nm pore arrays functionalized with purified FG-Nups can 
behave selectively36; that is, they allow nuclear transport receptors 
to efficiently pass but block other proteins. This showed for the first 
time that the FG-Nup mesh alone is sufficient to impart a selective 
transport barrier, which is a striking finding considering that the 
biomimetic NPCs consisted of only one type of FG-Nups, whereas 

native NPCs feature more than ten different types of FG-Nups. 
Selective transport across individual biomimetic nanopores could 
be measured by grafting FG-Nups to the inner walls of a solid-state 
nanopore (Fig. 4c), with ionic current measurements providing 
single-molecule resolution37. These biomimetic NPCs provided the 
first insights into the conformation of FG-Nups within the pore by 
examining the behaviour of the conductance as a function of pore 
diameter. Follow-up work emphasized the key role of the hydro-
phobic residues of the FG-Nups, as the corresponding mutants 
whose hydrophobic amino acids were replaced by hydrophilic 
amino acids lost their selectivity altogether118. These experiments, 
coupled with molecular dynamics simulations, revealed the impor-
tant role of the cohesiveness of the FG-Nup mesh for achieving 
proper selective behaviour. More recently, nanopores functionalized 
with user-defined protein sequences that mimicked native FG-Nups 
were also shown to be selective, demonstrating the outstanding 
robustness of FG-Nups towards drastic changes in their amino acid 
sequence39. A creative, alternative approach to mimicking NPCs is 
the use of a DNA origami ring as a scaffold with programmable sites 
for anchoring FG-Nups (Fig. 4d)17,18,119. This platform was used to 
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image the spatial arrangements of confined FG-Nups using cryo-
electron microscopy and atomic force microscopy, and allows the 
exploration of more complex FG-Nup meshes that combine differ-
ent types of FG-Nups.

Biomarker identification and quantification using nanopores
The adaptation of nanopore sensing technologies in clinical meth-
odology presents new challenges associated with the greater com-
plexity and heterogeneous nature of medical specimens compared 
with laboratory-made samples (Fig. 5). Additionally, clinical sens-
ing also requires extremely high precision, specificity and sensitiv-
ity, which further complicates its implementation. Nevertheless, the 
potential ability of nanopores to offer a generic and highly flexible 
sensing platform for bodily fluids (liquid biopsy) stands out as a 
high-impact opportunity that has begun to be addressed only in 
recent years.

Two primary factors can be identified as the main roadblocks 
in realizing this vision. First, unlike laboratory-made ‘analytical 
samples’, the target biomolecules in clinical samples (often nucleic 
acids or protein biomarkers) span a large range of concentrations, 
from as low as tens of attomolar (10−18 M) for some blood patho-
genic infections and circulating tumour DNAs to subnanomolar 
(10−9 M) for severe acute respiratory syndrome (SARS), influenza 
and other biomarkers120. In many cases, super-low biomarker con-
centrations severely limit the use of standard purification/concen-
tration techniques121. Second, most clinical samples contain an 
abundance of constituents that may interfere with the nanopore 
sensor itself (that is, blocking the nanopore or causing false translo-
cation events). In particular, bodily fluids such as plasma, urine and 
nasal secretions can clog the nanopore prematurely. Moreover, bulk 
purification assays, including liquid chromatography and ‘clean-up’ 
columns, which are widely used in life sciences research, are not 
optimal for nanopore-based single-molecule sensing as they are 
lossy, time-consuming and may not transfer well to point-of-care 
applications.

In recent years, researchers have begun to tackle these chal-
lenges by developing smart assays and devices for the treatment 
of clinical samples, taking advantage of some of the unique capa-
bilities of nanopore sensors. In particular, owing to their extremely 
small and compact form factor, nanopore sensors can be integrated 
into microfluidic devices used for either sample preparation or 

analyte concentration, further increasing the yield of detection122. 
Moreover, biophysical concentration strategies, for example, those 
that involve dielectrophoretic trapping or isotachophoresis focus-
ing, can in principle concentrate the target species by several orders 
of magnitude and therefore have potential for the future develop-
ment of liquid biopsy applications involving biomolecule-based dis-
ease prognostics and diagnostics123.

A number of biochemical assays have already been developed to 
enhance molecular specificity and circumvent the negative effects 
of background molecules on nanopore functionality. These assays 
involve minimal losses of target molecules during sample prepara-
tion while at the same time protecting the nanopore by the selective 
degradation of background molecules. For example, a biological 
nanopore-based direct, digital counting of single-nucleotide poly-
morphic sites marked with locked nucleic acid–synthetic molecules 
was used for the detection of Shiga toxin-producing Escherichia 
coli serotype and cancer-derived driver mutations35,124. Another 
approach using solid-state nanopores capitalized on the extremely 
high specificity of DNA ligase to pull down selected circulating 
tumour DNA mutations associated with breast cancer genes (that 
is, ERBB2 and PIK3Ca) in blood samples34. These mutations were 
sensed optically by tagging the probe oligonucleotides with fluores-
cent dyes and supplementing the electrical sensing of the nanopore 
with a single-molecule optical detection approach. Solid-state nano-
pores were also used to quantify global 5-hydroxymethylcytosine 
epigenetic DNA modifications in human tissue derived from both 
healthy breast tissue and stage 1 breast tumour tissue125. In another 
recent study, the high selectivity of DNA aptamers was used to fab-
ricate specific DNA ‘carriers’ with high affinities for specific protein 
biomarkers in a plasma sample, producing characteristic electric 
current traces when translocated through a nanopore formed at the 
end of a glass-pulled pipette126. Similarly, the unique nanopore elec-
trical signatures of DNA–peptide nucleic acid-peptide complexes 
targeting anti-human immunodeficiency virus, tumour-necrosis 
factor-α or tetanus toxin were used to quantify low levels of the 
antibodies extracted from saliva swabs127. Taking advantage of 
electro-optical sensing, short hairpin-structured oligonucleotides 
containing fluorophore and quencher moieties (‘molecular bea-
cons’) were used to mark and identify specific complementary 
DNA molecules from human serum and urine as they were forced 
through the tip of a nanopipette128.
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An alternative strategy for sensing protein biomarkers in bio-
fluids has been explored involving the creation of a protein bait 
antibody connected to a biological nanopore, hence serving as a 
local ‘trap’ for the target protein52,129. Specifically, outer membrane 
protein G with a short, biotinylated polymer chain was used as a 
sensing probe. The binding/unbinding kinetics of several antibio-
tin antibodies (including monoclonal antibodies) were studied in 
a buffered solution of diluted serum. Interestingly, the different 
antibiotin antibodies showed remarkably different binding/unbind-
ing kinetics, presumably due to different antibody sizes, shapes or 
charges. A similar approach involved a truncated t-FhuA protein 
pore equipped with a short hexapeptide tether, a barnase protein 
receptor and a dodecapeptide adapter50. The capture and release 
events of a protein analyte by the tethered protein bait occurred 
outside the nanopore and were accompanied by uniform current 
opening, whereas non-specific pore penetrations by non-target 
components of the serum incurred irregular current blockades. As 
a result of this unique peculiarity of the readout between specific 
protein captures and non-specific pore penetration events, which 
result in highly dynamic ion current signatures, this selective sensor 
can quantitatively sample proteins and has the potential to provide 
richer information on detected analytes than classical immunosor-
bent assays.

The α-haemolysin protein pore was used to selectively detect 
microRNA (miR) molecules hybridized in solution to oligonucle-
otide probes, allowing the quantification of the miR-155 biomarker 
from the purified plasma samples of lung cancer patients32. The 
specific binding of the miR to the probe molecules generated long, 
voltage-driven unzipping events that were readily sensed by ana-
lysing the ion current traces130. More recently, a purification-free 
method for the nanopore-based digital counting of mRNA expres-
sion was demonstrated121. The method involves the reverse tran-
scription of the target genes, directly followed by the enzymatic 
degradation of the background molecules with no intermediate 
purification stages. The accuracy of the assay relies on designing 
highly specific reverse transcription primers and avoiding poly-
merase chain reaction (PCR) amplification, which could lead to 
erroneous amplification in cases where the clinical sample contains 
small amounts of the target mRNA biomarker. The method was 

used to quantify mRNA cancer biomarkers, such as MACC1, as well 
as for the PCR-free sensing of SARS coronavirus 2 (SARS-CoV-2) 
clinical samples, potentially showing greater accuracy than the 
gold-standard quantitative PCR with reverse transcription method.

Nanopore sensing of clinical samples is not limited to nucleic 
acids and proteins. Recently, it was found that the method used to 
measure the conformational changes in proteins lodged inside a 
biological nanopore could also be adapted to sense the concentra-
tion of metabolites, such as glucose and asparagine33 or vitamin B1 
(ref. 131), directly from bodily fluids (blood, sweat, urine and saliva). 
Hundreds of substrate-binding proteins exist in nature that recog-
nize their cognate ligands through large conformational changes, 
which could then be used to recognize a wide variety of metabolites. 
Other examples include the indirect detection of thyroid-stimulating 
hormone from human serum samples using a magnetic bead-based 
sandwich assay132 and the sensing of drugs, such as cocaine, in 
human serum or saliva by means of an aptamer–ssDNA complex, 
which undergoes strand displacement and translocation through 
a nanopore in the presence of the drug133. Additionally, hyaluronic 
acid, which plays a critical role in tissue hydration, inflamma-
tion and joint lubrication, was quantified in synovial fluid using 
solid-state nanopores. The hyaluronic acid molecules were isolated 
using hyaluronan-binding protein-coated magnetic beads before 
the target molecules were released for nanopore sensing134.

In all the examples provided for the nanopore-based sensing of 
clinical biomarkers, the ability to sense multiple species (for exam-
ple, DNAs, RNAs and metabolites) using the same nanopore is a 
direct consequence of the single-molecule nature of the technique 
in which only one molecule is sensed at a time, and a dynamic ion 
current trajectory over time is used as the basis for target multiplex-
ing. This illustrates the great potential that nanopore sensing holds 
for future complex biofluid characterization, often involving a mul-
titude of biomarkers.

Conclusion and perspectives
This Review has outlined diverse nanopore research directions and 
applications beyond DNA sequencing. Tremendous progress has 
been made over the past two decades. Nanopores have become an 
essential single-molecule tool in multiple disciplines, including 
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chemistry, biophysics and nanoscience. However, there are still chal-
lenges to overcome before the full potential of nanopore technology 
can be attained. For example, improvements in sensing accuracy and 
temporal resolution will be necessary to uncover the exact chemical 
compositions of single biopolymers (for example, proteins or polysac-
charides). Specifically, proteins consist of 20 natural amino acids and 
polysaccharides of more than 10 monosaccharide units compared 
with just the 4 nucleobases in DNA. Therefore, nanopores will most 
probably require tailoring, as the volume of the sensing region should 
be of comparable size to a single unit of the biopolymer. More impor-
tantly, the nanopore should be optimally sensitive to the chemical 
or physical properties of the building blocks, producing distinguish-
able ionic current signatures for each unit. This could be achieved 
by carefully functionalizing a pore’s inner surfaces to manipulate the 
interactions between the biopolymer and the nanopore, providing 
the required sensitivity, selectivity and capture efficiency. Interesting 
directions to explore are the de novo design of nanopores135,136 
and the synthesis of DNA origami scaffolds137,138, which will allow 
the size and shape of nanopores to be tailored beyond the abilities 
of current engineering methods. The use of non-natural amino 
acids87 may expand the diverse chemical functionalities of biologi-
cal nanopores to facilitate the study of covalent and non-covalent 
reactions under nanopore confinement. While the functionalization 
of solid-state nanopores with natural elements has proven fruitful, 
the incorporation of new modalities, such as optically, magnetically 
and electrochemically sensitive chemical groups (for example, por-
phyrin derivatives and radical polymers) and materials (for example, 
MXenes and nanocrystals), at the pore interface is worth exploring 
to allow spectrometric readouts (for example, Raman scattering and 
fluorescence) and facilitate the active control of the detection process 
(such as feedback between interaction and analysis).

The ability to design nanopores with bespoke structures, shapes 
and chemical properties will provide a well-defined environment 
for the precise control of single-molecule catalysis. By taking advan-
tage of nanopores designed at the molecular scale, catalytic sites 
might be introduced into a protein nanopore lumen; then, reactant 
molecules captured inside the nanopore can be catalysed to form a 
product that is further released and translocated through the nano-
pore. This would provide a bottom-up approach for the production 
of customized chemicals. Presuming that a likely ultimate speed for 
the product formation is 1 ms per molecule, an array of 100 nano-
pores working in parallel would yield approximately 3.6 × 108 prod-
ucts in less than 1 h. Nanopores have also been increasingly used as 
force transducers, allowing the controlled localization, trapping and 
orientation of a diverse range of biomolecules for single-molecule 
biophysics studies130,139. Finally, nanopore-based biomedical appli-
cations have developed beyond DNA sequencing and epigenetic 
modification analyses, and are now used to sense molecular bio-
markers (proteins, metabolites and nucleic acids) in biofluids and 
other biological specimens. Given the fast growth rate of nanopore 
applications, it is likely that nanopore technology will become a 
prominent technique in single-molecule in vitro diagnostics.

In parallel with advances in nanopore design, portable nanopore 
devices consisting of millions of individual pores on a chip could 
produce enormous amounts of sensing data at high speeds. Similar 
devices could be used for the retrieval of various forms of data 
stored in DNA140,141or other polymers142.
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