
Single-Molecule Structure and Topology of Kinetoplast DNA Networks

Pinyao He ,1,2 Allard J. Katan ,1 Luca Tubiana ,3,4,5 Cees Dekker,1 and Davide Michieletto 6,7,*

1Department of Bionanoscience, Kavli Institute of Nanoscience,
Delft University of Technology, 2629 HZ Delft, Netherlands

2Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments,
School of Mechanical Engineering, Southeast University, Nanjing 211189, China

3Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy
4INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy

5Faculty of Physics, University of Vienna, 1090 Vienna, Austria
6School of Physics and Astronomy, University of Edinburgh,

Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
7MRC Human Genetics Unit, Institute of Genetics and Cancer,
University of Edinburgh, Edinburgh EH4 2XU, United Kingdom

(Received 2 September 2022; revised 10 December 2022; accepted 27 February 2023; published 19 April 2023)

Kinetoplast DNA (kDNA) is a two-dimensional Olympic-ring-like network of mutually linked
DNA minicircles found in certain parasites called trypanosomes. Understanding the self-assembly and
replication of this structure are not only major open questions in biology but can also inform the design of
synthetic topological materials. Here, we report the first high-resolution, single-molecule study of kDNA
network topology using AFM and steered molecular dynamics simulations. We map out the DNA density
within the network and the distribution of linking number and valence of the minicircles. We also
characterize the DNA hubs that surround the network and show that they cause a buckling transition akin to
that of a 2D elastic thermal sheet in the bulk. Intriguingly, we observe a broad distribution of density and
valence of the minicircles, indicating heterogeneous network structure and individualism of different
kDNA structures. Finally, we estimate the 2D Young modulus of the network to be orders of magnitude
smaller than that of other 2D materials. Our findings explain outstanding questions in the field and offer
single-molecule insights into the properties of a unique topological material.
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I. INTRODUCTION

Kinetoplast DNA (kDNA) is one of the most fascina-
ting naturally occurring genomes [1–7]. It is formed in
the mitochondrion of unicellular parasites of the class
kinetoplastida, and it is composed by an interlinked two-
dimensional network of small DNA circles, or “mini-
circles,” and larger DNA rings called “maxicircles.”
Maxicircles contain the genetic information for the syn-
thesis of mitochondrial proteins, while minicircles display
somewhat redundant genetic information and are mainly
necessary to perform extensive RNA editing on the
maxicircle mRNA [8]. The precise composition of the
network depends on the organism; for instance, Crithidia

fasciculata kDNA is contained within a 1 μm × 0.4 μm
disk-shaped organelle and made of about 5000 minicircles
(2.5 kb, or 850 nm, long) and 30maxicircles (about 30 kb, or
10 μm, long). The mechanisms through which kDNA self-
assembles and replicates are poorly understood [4,9–12].
The evolutionary benefit of a linked mitochondrial

genome remains a major open question in trypanosome
biology [9,13]. It has been speculated that the intercon-
nected structure of linked rings provides genomic stability
and a means to mechanically preserve genetic material, i.e.,
to avoid losing minicircles during cell division [9]. A
common feature of kDNA is that it is found in the basal
body, near the parasite flagellum. For this reason, it has also
been speculated that the linkedness of the network may
serve to provide mechanical stability to the organelle [6].
Taken outside the parasite, kDNA expands to assume a
“shower-cap” buckled shape about 5 μm in size [14–16].
Once adsorbed onto a surface for electron microscopy
(EM) or atomic force microscopy (AFM), kDNA stretches
to an oval shape 8 μm × 10 μm in size and displays a thick
border which is characterized by rosettes and brighter
nodes [17–20].
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In 1995, Cozzarelli and coauthors designed an elegant,
albeit indirect, bulk method based on gel electrophoresis of
digestion products to show that C. fasciculata kDNA
topology is compatible with a two-dimensional hexagonal
network where each ring is linked to other three mini-
circles, on average [21,22]. These results have also been
recently independently confirmed using the same bulk
method [23]. In spite of this, recent microscopy experi-
ments indicate that kDNAs assume highly heterogeneous
shapes, suggesting a broad spectrum of topologies [14].
Alongside experiments, computational and theoretical

work have provided evidence that this type of linked
network may be formed as a result of a percolation
transition [23–25]. Beyond the percolation transition, over-
lapping rings form a system-spanning network of inter-
locking rings. At the onset percolation, the mean valence v,
i.e., the number of rings that are linked to any one ring on
average, was found to be three in simulations [25], in
agreement with gel electrophoresis experiments [21].
Arguably, the minicircles acquire their valence

in vivo, in a condition where the kDNA is under
confinement. Given a minicircle number density ρ ≃
5000 rings=½πð0.5 μmÞ20.4 μm� ≃ 15 900 rings=μm3 and
a radius of gyration of a minicircle Rg ≃ lp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=12lp

p
≃

60 nm, one would expect a number of overlaps per
minicircle P ¼ 4ρ=3πR3

g ≃ 14.4. Even if only half of the
overlapping minicircles became linked to each other
via topoisomerase-mediated strand crossing [3] or the
linking effectively occurred in 2D due to stacking and
alignment [24,26], this overlapping number would still
yield a valence much larger than v ¼ 3 estimated by
Cozzarelli [21]. These arguments suggest that the kDNA
cannot be thought of as a gas of freely crossable rings and
instead regulates its topology via, e.g., packaging proteins
such as KAP [19] or by tuning the temporal and/or spatial
activity of topoisomerases.

All of the quantitative evidence on kDNA network topo-
logy comes from indirect, bulk measurements [21–23], and
recent microscopy work suggests that different kDNA
networks have very different shapes and behaviors, sug-
gesting heterogeneity in the self-assembly of this fascinat-
ing structure [14]. To shed more light into this, here we
study C. fasciculata kDNA networks using high-resolution
single-molecule AFM and molecular dynamics simula-
tions. More specifically, we first quantitatively map the
density of minicircles in the network as a function of their
position and quantify the network structure by measuring
its porosity. We also identify the characteristic rosettes at
the rim of the network as originating from the localization
of essential crossings between linked minicircles. Imposing
a constraint on the size of the rim, we computationally
show that the network undergoes a buckling transition that
explains recent in vitro observations. Then, we employ
steered molecular dynamics simulations to reconstruct the
topology of the network at the single-molecule level. We,
thus, obtain the full distribution of the valence in the
network: We find it to be compatible with a mean valence of
3 but at the same time to display a broad distribution,
suggesting heterogeneity in the network topology and
across networks. Notably, our findings are not compatible
with a perfect hexagonal network, thus refusing the
classical model by Cozzarelli [21]. Finally, we discuss
our findings in light of the work done on subisostatic floppy
networks [27] and 2D elastic thermal sheets [28] and
predict that the kDNA should display a 2DYoung modulus
much lower than that of other 2D materials such as lipid
membranes and 2D mechanically interlocked structures.

II. RESULTS

A. The density of minicircles is not uniform

We perform dry, high-resolution AFM on C. fasciculata
kDNA (TopoGen). A representative image, enlargements,
and sketches are shown in Figs. 1(b)–1(e). We first notice

FIG. 1. (a) AFM images of kDNA from C. fasciculata. The scale bar is 2 μm, and the yellow color scale ranges from 0 (black) to
3.5 nm height (white). (b),(c) Enlargements of the rim and cap, respectively. (d) Sketch of the network of minicircles from (b) where we
color code the minicircles forming the rim in red. (e) Simplified sketch where we schematically show that the network is formed by
linked rings. This is not a one-to-one representation of (d). (f) Box plot of minicircle density in the cap and the rim of the network
(obtained from selected regions and averaged across three kDNA networks). The rim density is computed by taking a circular region of
radius r ¼ 100 nm (about the size of a minicircle; see below) centered at the hubs. (g) Box plots of the density of minicircles as a
function of the distance from the center.
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that the networks display fluctuations in the density of
minicircles (bright and dim areas within the kDNA “cap”).
At the edge of the networks, we notice bright and regularly
spaced nodes along its edge, as previously reported [18–20]
[see Figs. 1(b)–1(e)]. To quantify the density of minicircles
in different regions of the kDNA, we first measure the
volume of isolated minicircles outside the kDNA network
(see also Fig. 2). These provide an internal control in our
experiments, as minicircles outside the kDNA network are
subjected to the same experimental artifacts (e.g., sample
dehydration) as the ones within the network. In turn, we
obtain an average volume for the single minicircles Imc
which we use to normalize the volume found in regions
within the kDNA. We then randomly sample selected
regions within the cap of the network and normalize their
total volume IðrÞ by Imc. The quantity ρðrÞ≡ IðrÞ=ðImcAÞ,
where A is the area of the sampled region, is the number
density of minicircles at location r in the image.
By averaging over four independent kDNA networks

(see Supplemental Material [30] for raw images), we
find that there are ρ ¼ 94� 17 rings=μm2 in the cap
[see Fig. 1(f)]. Given that the mean short and long axes
of our kDNAs are l ¼ 7.8 μm and L ¼ 9.1 μm, respec-
tively, we find a corresponding total number of minicircles
Ntot ¼ ρπlL ¼ 5296. Considering the limits of the pixel
resolution and the assumptions made for the conversion of
signal intensity to DNA mass, this number is in excellent
agreement with that reported in the literature, i.e., 5000 [21]
for C. fasciculata kDNA. It should be highlighted that we
could have arrived at a similar value of ρ by simply
assuming that the network is formed by 5000 rings
uniformly distributed in the network; however, using our
method, we (i) verify independently that the network has
around 5000 rings and (ii) develop a way to measure ring
density as a function of position r in the kDNA. By
applying the same method to the “hubs” along the rim
of the kDNA—which we define as the region within one

minicircle size (r ¼ 100 nm; see below) from the center of
the brightest nodes—we find that the average ring density
is significantly larger at the rim, with mean ρrim ¼ 153.1�
27.0 rings=μm2 [see Fig. 1(b)].
We then ask if there is a dependence of minicircle density

as a function of the position in the network. We sample
about 200 small regions in four different kDNA networks
and compute ρðrÞ as above. We then plot this as a function
of the radial distance r ¼ jr − rcj from the center of the
network. We discover that the density displays a smooth
decrease by approximately 13% from the center to the
periphery [Fig. 1(d)]. Since a uniformly filled disk that is
stretched isotropically still displays a uniform mass dis-
tribution, we argue that the observed density gradient is a
feature of the network rather than an artifact of the imaging
method. We hypothesize that this density gradient may be
locked in at the end of replication—which occurs at
antipodal points positioned outside the kDNA and in
relative rotation with respect to the kDNA disk in C.
fasciculata [4]. The gradient in minicircle density suggests
that the topology of the kDNA may not be uniform and that
minicircles in the middle of the cap may be more connected
than the ones at the periphery (excluding the rim). The
density gradient and the difference between DNA density
in cap and rim have not been reported nor quantified before,
and we argue that these are potentially important to account
for in future models of kDNA self-assembly [21,23–25,31].

B. Estimating the valence of minicircles

Based on our measurement of minicircle density within
the cap, we now estimate the valence v of the minicircles,
i.e., the number of minicircles that are linked to any one
minicircle. To do this, we first compute the minicircle
average size by tracing the contour of DNA rings found
outside the network [in Fig. 2(a), we show examples of mini-
circles used for this analysis]. We find that isolated mini-
circles have a mean contour length of Lc ¼ 791� 66 nm
and amean radius of gyrationRg ¼ 101.3� 10.8 nm,which
is in goodagreementwith the sizemeasuredbyAFMofDNA
plasmids of similar length absorbed in 2D [32]. Since we
observe heterogeneous conformations displaying plectone-
miclike writhe [Fig. 2(b)], we also compute the area of the
minicircles and notice that it displays a broader distribution,
compatible with the presence of writhing and open mini-
circles in the AFM images [Figs. 2(b)–2(d)]. From the
number density of minicircles per unit area ρ and their
average size Rg, we estimate that the number of overlapping
minicircles in the flattened kDNA isP ≃ ρπR2

g ≃ 3 (valid for
isotropic and randomly shaped minicircles). This number
is about fivefold smaller than the number of overlaps
expected in vivo (wherewe recall that the kDNA is contained
within a disk 1 μm in diameter and 0.4 μm in height) but is
compatible with the average valence v ≃ 3 measured by
Cozzarelli [21].
At the rim, we may use an effectively larger minicircle

density, yielding P ≃ ρrimπR2
g ≃ 4.8, in turn suggesting a

FIG. 2. (a) Examples of single rings used to compute the
perimeter and radius of gyration of single minicircles. The
scale bar is 500 nm. (b),(c) Enlargements of minicircles with
supercoiledlike (b) and open (c) conformations. Scale bars are
250 nm. (d) Size of the minicircles, computed as the radius of
gyration of the AFM traces, Rg, and the square root of the area,
A1=2. We find a mean Rg ¼ 101.3� 10.8 nm, in line with
Ref. [29] reporting Rg ¼ 109 nm for 2.6-kb-long plasmids, and
mean A1=2 ¼ 154.4� 22.5 nm.
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larger valence of the minicircles at the hubs. However, we
note that the minicircles at the rim are stretched, in turn
increasing their Rg and potentially their real valence. In the
next section, we characterize the minicircles at the rim in
more detail.
Finally, we note that the Rg we measure from the 2D

absorbed minicircles is typically larger than the Rg they
would assume in bulk [33]. In the extreme case that they
assume the shape of ideal loops, we recall that we would
expect Rg ≃ 60 nm. In turn, we would expect a valence of
about 1 for ring density ρ ≃ 95 μm2. On the other hand, we
know that in vivo the kDNA is packaged at much larger
density, which, therefore, increases the maximum valence
that each minicircle can reach. Indeed, if every minicircle
were linked to every overlapping neighbor, we would
expect v ≳ 10. In spite of this, one should bear in mind
that DNA minicircles cannot link without the presence of
(type 2) topoisomerase; thus, its activity within or at the
periphery of the network appears to be critical to regulate
the catenation of the network [9,34,35].
We should note that, importantly, the topology of the

network is unchanged from its native, physiological state
in vivo and that the density of minicircles measured in the
previous section, together with their size, is intimately
related to the inherent network topology. If the mini-
circles had a larger valence, we would inevitably expect
a correspondingly larger DNA density due to the reduced
expansion of the network when stretched. The fact that our
networks have the same topology that they have in vivo is a
key feature that connects our measured structural param-
eters to the physiological situation.

C. The kDNA hubs are sites of essential
crossings between linked minicircles

As mentioned above, a feature that stands out from the
AFM images is the rim, formed by nodes (or hubs)
connected by clear DNA tethers [Figs. 3(a) and 3(b)].
By enlarging these features, one can appreciate that these
nodes are formed when several minicircles come together
into so-called “rosettes” [20] [Figs. 3(a) and 3(b)].
The average distance between nearest nodes in the

network is close to that of a minicircle pulled taut, i.e.,
Lt ¼ 0.5 × 2500 bp × 0.34 nm=bp ¼ 425 nm [Fig. 3(c)].
Additionally, by directly measuring the density of strands
in a circular region with radius r ¼ 100 nm (equal to that of
a minicircle in equilibrium outside the network) and
centered at the nodes, we find that the average number
of overlapping minicircles per hub is Phub ¼ 4.7� 0.8,
which should be compared with Pcap ¼ 2.9� 0.4 found in
the cap [Fig. 3(d)]. This may still be an underestimate, as
the minicircles at the rim are stretched and their overlap
number may, thus, be larger. Our images [see Figs. 3(a)
and 3(b)] also suggest that nearest nodes are directly
connected by single minicircles, which are, therefore,
redundantly linked. When minicircles are stretched due

to the kDNA being absorbed, the essential crossings
between minicircles become localized in hot spots [36],
forming the hubs. In the bulk, we expect the minicircles to
relax and the hubs to disappear, although a rim with higher
DNA density can still be visualized [14].
The reason why C. fasciculata kDNA displays a larger

density of minicircles at the rim may be due to its
replication mechanism, as newly replicated minicircles
are added at the periphery from the antipodal points located
just outside of a rotating kDNA network [22,34]. We also
recall that, in vivo, the kDNA is compressed in a disk of
diameter of 1 μm, while it reaches approximately 10 μm
when fully adsorbed. This approximately tenfold compres-
sion in vivo effectively reduces the distance between nodes,
and we, thus, expect the essential crossings to be within
1 Rg of each other. This redundancy in the number of links
is akin to that of replicating kDNA networks [22], and we,
thus, argue that the edge of the network could be made by
newly replicated minicircles.

D. Simulations of kDNA with a constrained rim
explain the buckling seen in bulk

Our data suggest that the minicircles at the rim are both
redundantly linked and stretched upon adsorption on the
mica. In the bulk, these minicircles tend to relax to their
equilibrium diameter, i.e., reducing their diameter from
≃350 nm to ≃200 nm. This yields an ≃ twofold decrease
in perimeter length as the essential crossings become

FIG. 3. (a),(b) Enlarged portions of kDNA showing hubs at the
periphery. Scale bars are 500 nm. (c) Distribution of distances
between nearest hubs. The dashed vertical line represents the
diameter of a minicircle if pulled taut, i.e., 1=2 × 2500 bp ×
0.34 nm=bp ¼ 425 nm. (d) Distribution of a number of over-
lapping minicircles in the cap and in the hubs.
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delocalized due to the minicircles’ entropy, in turn leading
to a certain degree of overlap [36]. If we thus treat the
perimeter of the kDNA as a polycatenane (a polymer made
of linked rings [37,38]), it is clear that a reduction in length
leads to a decrease in its radius of gyration Rg. Thus, we can
study the behavior of the kDNA under a variable degree of
constraint on the length of its perimeter (due to minicircles
relaxing to equilibrium conformations) by imposing a
constraint on the size (radius of gyration) of the rim.
To do this, we simulate a circular patch of an hexagonal

(in line with Refs. [21,31]) network and constrain its border
to have a radius of gyration Rg;rim different from that
assumed when the patch is completely planar, called Rg;max.
We consider a system made of n ¼ 604 rings, each made of
m ¼ 60 self-avoiding beads connected by finitely exten-
sible nonlinear elastic (FENE) springs [see Figs. 4(a)
and 4(b) and Supplemental Material [30] for details].
For computational efficiency, we consider semirigid rings,
with persistence length lp ¼ 120 beads, but we expect a
similar result for flexible rings; as we see below, the
location of the buckling transition is expected to be mainly
dependent on the ratio of the 2D Young modulus and the
bending stiffness. The network is constructed by placing
the rings on the nodes of a circular patch of hexagonal
lattice [39] and then linking each ring with its neighbors by
randomly choosing between a þ1 and a −1 Hopf link. We
identify the border of the network as the set of rings having
only two neighbors or being directly linked to a ring having
two neighbors only. We constrain the radius of gyration Rg

of the rim to a user-defined value Rg;rim with an additional
harmonic potential in the Hamiltonian:

Vconstr ¼ KðRg − Rg;rimÞ2: ð1Þ

We then simulate the equilibrium behavior of three differ-
ent network topologies (distinguished by the sign of the
linking numbers between neighboring rings) for different
values of Rg;rim via Langevin dynamics in LAMMPS [40]
(see Supplemental Material [30] for details).
We highlight that this approach is agnostic to the precise

geometrical arrangement and topology of the minicircles at
the periphery. It effectively captures the fact that stretched
minicircles return to their equilibrium size and shrink the
periphery of the network when lifted from the mica. Since
the distance between localized essential crossings is
≃400 nm (Fig. 3) and the equilibrium diameter of isolated
minicircles ≲200 nm (Fig. 2; note that minicircles in the
network have smaller Rg than isolated ones), we estimate a
reduction in circumference > 2 accompanied by a similar
reduction of its Rg. Thus, by using a continuously varying
constraint on Rg, we can study the behavior of the network
under different levels of shrinkage.
To quantify the equilibrium geometrical properties of

the network, we first map the hexagonal lattice of rings
to a triangular mesh with edges connecting the center of
mass of half of the rings and then compute the mean
curvature as [41]

Σ ¼
XN
i¼1

1

2
ðK1;i þ K2;iÞ; ð2Þ

where K1;i and K2;i are the principal curvatures at facet i
(see Supplemental Material [30] for the details). The
results, reported in Fig. 4(c), show that, when the constraint
at the perimeter is Rg;max=Rg;rim > 2, the equilibrium
conformations display a buckled, “shower-cap” shape, as
seen in experiments [14] [see Fig. 4(d)]. Interestingly, the

FIG. 4. (a) An in silico kDNAwith hexagonal structure of rings. The border is highlighted in red. (b) Enlarged portion of (a) showing
the hexagonal lattice linkages. See Supplemental Material [30] for details on how the network is built. (c) Absolute value of the sum of
the mean curvature of the triangular mesh, jΣj, calculated by joining the center of mass of the rings and plotted as a function of the
constriction c ¼ Rg;max=Rg;rim. In these simulations, Rg;rim is user defined and steered using a harmonic potential. The plot shows an
abrupt buckling transition. Different symbols correspond to different network topologies chosen by random linking of neighboring rings
while preserving the hexagonal structure. (d) Snapshots of the network at four different values of constriction c.
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absolute mean curvature jΣj increases abruptly from 0
(saddlelike surface) to ≃1σ−1 (buckled) and eventually to
≃3σ−1 (shower cap).
We highlight that the buckling transition occurs close to

the constriction value Rg;max=Rg;rim ≃ 2, which is the value
we expect in the kDNA due to the shrinkage of the
minicircles as they relax from fully stretched (≃400 nm)
to relaxed (≲200 nm). Thus, our simulations strongly
suggest that the buckling behavior of the kDNA observed
in vitro is mainly determined by how the rim is self-
assembled in vivo rather than by the kDNA internal (cap)
topology.

E. Mesh size distribution

Having quantified the distribution of minicircles in the
network, we now quantify its mesh size. Given that
the minicircle density is around ρ ¼ 94 rings per μm2,
the interminicircle separation is λ ¼ 1=

ffiffiffi
ρ

p ¼ 103 nm. In
turn, we can estimate the mesh size as ξ ¼ jλ − 2Rgj ≃
100 nm (recall that Rg ¼ 101.3 nm; see Fig. 2).
To quantify the mesh size more precisely, we employ

morphological segmentation [42]. We first manually
remove both imaging artifacts and the rim from within
the region of interest [see Fig. 5(a) to be compared
with Fig. 1(a)]. We then apply morphological segmentation
to obtain a map of watershed basins, as shown in Figs. 5(a)–
5(c). We then measure the area of each basin a and esti-
mate their size ξ ¼ ffiffiffi

a
p

. We find that the values of pore
sizes are broadly distributed and range between 10 and
200 nm with a peak (median) around 20 nm and
mean ξ ¼ 34.0� 16.6 nm.
The distribution of mesh sizes appears to follow an

exponential behavior for values larger than 50 nm
[Fig. 5(d)]. These values are small compared with the
typical 100–500 nm of agarose gels and closer to those of
DNA nanostar gels [43].
Interestingly, by computing the distance of all the basins

from the center of the network, we observe that the average
pore size increases toward the periphery [Fig. 5(d)]. This is

in line with our previous finding that the DNA density
decreases toward the periphery. More specifically, we find
pore sizes around 30� 0.7 nm within the center and
around 35� 0.7 nm near the periphery (where the redun-
dantly rim is excluded). We note that these values are
smaller than the crude calculation we make above
(ξ ≃ 100 nm), which is valid only for perfectly rigid
minicircles. This is most likely due to the fact that the
minicircles are writhing onto themselves, thereby yielding
smaller pore sizes overall.
Finally, we note that, in a lattice of rigid rings where

every overlap is a link, one can map the number of pores
(basins in the morphological segmentation) to the number
of rings and their valence as Npores > Nringsð1þ v=2Þ.
With flexible rings and nonconnected overlaps, we expect
more pores formed. We can, therefore, set an upper
bound on the valence in the networks that we analyze:
v < 2ðNpores − NringsÞ=Nrings. From the morphological seg-
mentation, we find Npores ¼ 19644� 2404, in turn imply-
ing v < 6. This large upper bound is likely due to overlaps
which do not result in linking yet still create mesh pores.
Arguably, and contrary to common chemically cross-linked
gels, the observed pores only mildly contribute to the
network elasticity, as some overlaps can be easily resolved
by pulling the rings past each other.

F. AFM-steered simulations

Despite the high-resolution AFM images, it is still
challenging to identify single minicircles inside the
cap of the network, and even less clear is to identify over-
and undercrossings between chains [see, for example,
Fig. 5(b)]. Because of this, it is impossible to unambi-
guously compute the topology of the network. More
specifically, we aim to quantify the distribution of linking
number Lk (defined as the number of times minicircles
wrap around one other) and the valence v (defined as the
number of minicircles that are linked with any other one).
To measure these, we perform molecular dynamics simu-
lations steered by our AFM data, with the aim of obtaining

FIG. 5. (a) Morphological segmentation of the AFM image show in Fig. 1(a). The scale bar is 1 μm. (b) An enlarged region showing
side by side the AFM picture and in (c) the result of morphological segmentation. (d) Probability density function (PDF) of mesh size.
The inset shows a log-linear plot of the same PDF, with an exponential decay reported as a guide for the eye. (e) Average pore size as a
function of the radial distance from the center of the network.
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XYZ coordinates of the DNA segments making up mini-
circles within the network.
To do this, we select a 1 μm × 1 μm region (ROI) within

the kDNA cap [Fig. 6(a)]. We then binarize the image by
selecting the pixels whose intensity is larger than the mean
background intensity plus 3 standard deviations. We then
use the binarized image as a mask on the original ROI to
extract the intensity of the pixels corresponding to DNA
strands in the AFM image. These pixels are transformed
into three types of phantom (nonsterically interacting) and
static (nonmoving) beads which attract the simulated DNA
rings (see Supplemental Material [30] for details of the
procedure and of the potentials used).
Molecular dynamics simulation is initialized by placing

M perfectly circular minicircles within the 1 μm2 region
[see Fig. 6(b)]. Each minicircle is modeled as a semiflexible
bead-spring polymer, where each bead is σ ¼ 10 nm (the
AFM pixel resolution); in turn, the 2.5-kb-long or 850-nm-
long minicircles are represented by 85 beads and a
persistence length lp ¼ 5σ ¼ 50 nm. The interaction
between rings is modeled via a soft potential. The simu-
lation is performed within a slab confinement in the z
direction with height h ¼ 3.0σ. The steered simulation is
split in three parts: (i) equilibration, (ii) steering, and

(iii) resolving crossings. In part (i), we homogenize the
distribution of rings in the system. We, thus, set a low-
energy barrier for crossing, and the rings are let to
equilibrate and to cross each other. In part (ii), we steer
the rings’ coordinates by turning on attraction between the
beads forming the DNA rings and the “phantom” beads
obtained from the AFM image [see Figs. 6(b) and 6(c); see
Supplemental Material [30] for details]. This phase ensures
that the simulated minicircle assumes conformations that
are compatible with the underlying AFM image. In part
(iii), we resolve overlaps between rings by ramping up the
height of the soft repulsive potential between polymer
beads. The final output of this procedure is an ensemble of
minicircle coordinates with fully resolved overlaps, i.e.,
well-defined over- and undercrossings, and whose 2D
projections are compatible with the underlying AFM image
we started from [Figs. 6(c) and 6(d)].
Motivated by our previous findings, we perform the

procedure just described in a region near the center and one
at the periphery (rim excluded) of the kDNA. In the former,
we initialize M ¼ 90 rings, while at the periphery we
initialize M ¼ 80 rings within the 1 μm2 ROI, in line with
the values of minicircle density reported in Fig. 1. To
benchmark our steered simulations with experiments, we

FIG. 6. (a) Figure showing a kDNA image (the scale bar is 2 μm) and an enlarged 1 μm2 region with the corresponding thresholded
image (black and white). (b) Starting configuration of the AFM steered MD: 90 rings are placed randomly in a quasi-two-dimensional
simulation box. Phantom beads (yellow, orange, and red in the figure) are static and act as Gaussian attracting basins. (c) At the end of
the MD simulation, we obtain ensembles of conformations that capture the correct length and size of minicircles, display no ambiguous
crossings with other rings. and are compatible with the underlying AFM image. (d) Snapshot of the resulting network after having
removed the slab confinement. (e) Distributions of Rg of the minicircles from AFM (picked from outside the kDNA) and of the
simulated ones (both from the center and periphery). (f) Network representation of (d), where each node is a minicircle and an edge
between nodes represents that they are linked. Our simulated networks typically have all the nodes in one large connected component.
(g) Distribution of valence, showing that the central minicircles are on average more connected than the peripheral ones. (h) Distribution
of linking number, showing that the most linked pairs are singly linked, and about 10% of them are doubly linked.
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first compare the distribution of ring sizes. We find that the
distribution is close to the one obtained from isolated
kDNA minicircles in the AFM images (Fig. 2) with the
caveat that the simulated rings display a broader size
distribution and a smaller mean, which is reasonable
given that they are in dense conditions, whereas the
AFM minicircles over which we compute the Rg are
isolated, outside the network. The experimental mean is
Rg ¼ 101.3� 10.8 nm, while the simulations give Rg ¼
71� 15 nm at the center and Rg ¼ 72� 15 nm at the
periphery [Fig. 6(f)], closer to the value estimated for ideal
chains (Rg ≃ 60 nm).
From the ensemble of conformations with resolved

overlaps, we can unambiguously compute the Gauss link-
ing number between pairs of minicircles as

Lk ¼ 1

4π

I
γ1

I
γ2

ðr1 − r2Þ · ðdr1 × dr2Þ
jr1 − r2j3

; ð3Þ

where ri represents the 3D coordinate of curve γi. We, thus,
define a linking matrix Lkði; jÞ where each entry is the
number of times ring i is linked to ring j. Additionally, we
define the valence of ring i as mi ¼

P
j θ½jLkði; jÞj�, where

θðxÞ ¼ 1 if x > 0 and 0 otherwise. Interestingly, we find
that the distribution of the valence depends, albeit weakly,
on the distance from the center of the network. In the more
central ROI, we find a mean valence hmceni ¼ 3.1� 1.5,
while in the more peripheral region we find hmperi ¼
2.5� 1.3 [Fig. 6(e)]. Furthermore, we measure the dis-
tribution of linking number lk ¼ Lkði; jÞ across all pairs
and find that, among those that are linked, the majority are
singly linked, around 10% doubly linked, and less than 1%
triply linked.
These numbers are in good agreement with the bulk,

indirect measures in Ref. [21], whereas here we can provide
a single-molecule quantification. Importantly, our method
does not assume a priori an ordered lattice arrangement of
the rings. Indeed, we find that they form connected,
percolating components with valence 3 even in the absence
of a precise hexagonal lattice structure [Fig. 6(f)]. Instead,
we find a broad distribution of valences which overall
retain the percolating nature of the structure. Our results,
thus, confirm that the kDNA minicircles have on average
valence 3, as found in Ref. [21], but they also indicate a
broad valence distribution and no crystalline order.

G. Elasticity of kDNA as a subisostatic network

In light of our results, kDNAs can be thought of as 2D
elastic networks with nodes (the minicircles) that have
valence around 3, on average. In general, a network is said
to be isostatic [27] when the number of constraints matches
the number of degrees of freedom. For 2D networks, the
critical isostatic coordination number is vc ¼ 4. Thus, the
kDNA is a subisostatic (floppy) network, with valence
comparable to that of other biological networks, such as

collagen [44]. The difference with collagen is that the
bonds between nodes are not made by stiff fibers but are
made by the linkages between minicircles, and their stiff-
ness is approximately (at least for small strain) that of an
entropic spring with constant κ0 ¼ 3kBT=R2

g. Subisostatic
networks display soft modes that cost zero energy even
when weakly strained [45] and undergo stiffening when
stretched beyond a critical strain γcðvÞ [44]. For strains
γ > γc, we can estimate the bulk (area) stretch modulus
as [44,46]

Y ¼ 5

48
ρκ0R2

g(v − vcðγÞ) ≃ 0.1
pN
μm

; ð4Þ

where vcðγÞ is the effective critical valence as a function of
the strain. For the purpose of this estimate, we take
v − vcðγÞ ≃ 1. In other words, we expect that it would
take a modest force, around 3 pN, to stretch or compress a
flat kDNA by 10%. We note that this calculation does not
account for the redundantly linked and denser rim around
the network. The bending rigidity can then be approxi-
mated as κbend ≃ Yð2RgÞ2 ≃ 3 × 10−21 J, with 2Rg about
the average thickness of the kDNA.
The bending rigidity κ was also recently estimated

using microfluidic constriction experiments and, in analogy
with vesicle deformation, it was found to be κ ¼ 1.8 ×
10−19 Nm [14]. However, the combination of in-plane and
out-of-plane deformations in kDNA is expected to be
different from that of vesicles, and, more importantly,
we expect drastically different area stretch modulus.
Lipid bilayers are liquidlike compositions of small mole-
cules with approximately nanometer thickness and display
large stretch moduli, Y ≃ 0.1–1 N=m [47], and equally
large bending stiffnesses κ ≃ 10−18 Nm. In contrast, kDNA
is made of 2.5-kbp-long DNA rings with an average size
Rg ≃ 100 nm; furthermore, the density of material inside
the kDNA is low compared with lipid bilayers, rendering
the structure much easier to deform both in plane and out of
plane. For these reasons, we expect the stretch modulus and
bending stiffness of kDNA to be widely different from that
of vesicles. In fact, according to Eq. (4), we expect these to
be 2–3 orders of magnitude smaller. A clear complication
of this picture is that kDNA networks in the bulk have
undergone a buckling transition driven by the rim. This
buckling may yield longer autocorrelation times of kDNA
shapes (e.g., anisotropy) and shows fast, subsecond rear-
rangements which are more in line with far smaller and
more flexible molecules [14].
Furthermore, we note that the buckling behavior of a 2D

elastic thermal sheet is typically controlled by the dimen-
sionless Föppl–von Kármán number vK ¼ A=h2, where A
is the area of the sheet and h its height. The parameter vK
can also be expressed in terms of the 2D Young modulus
and bending rigidity as vK ¼ YR2=κ, where R is a
characteristic linear dimension of the system. Taking h
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to be the diameter of minicircles in their relaxed state
in vitro, we obtain for kDNA networks vK ≃ 1700, which is
far lower than other 2D materials (for instance, graphene
has 109, being extremely thin). In this respect, kDNA is
considered to be “thick” and, therefore, easily stretchable or
compressible before buckling. In the “thin” limit, buckling
occurs before any in-plane deformation.
The competition of compression and bending moduli

gives rise to a natural length scale called “thermal length
scale” which dictates the behavior of 2D elastic thermal
sheets [28,48]. This length scale is found as

lth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3κ2

3kBTY

s
: ð5Þ

When compression deformations are larger than lth, it is
more energetically favorable for a 2D elastic sheet to buckle
out of plane. By using the values of Y and κ found above,
we obtain a thermal length scale lth ≃ 1.8 μm. This value
may be interpreted as the amount of compression needed
for the network to buckle. Interestingly, the ratio of
maximum radius of the kDNA to this thermal length scale
is Rg;max=lth ¼ 2.5, which is in the buckled phase [see
Fig. 4(c)]. This implies that the buckling behavior of kDNA
is well described by the physics of 2D elastic thermal sheets
and that, as we discuss above, the properties of the nodes at
the rim are such that their relaxed state induces an in-plane
compression beyond the thermal length scale of the net-
work lth, thereby inducing buckling. We argue that kDNA
networks with different replication mechanisms may not
display redundantly linked, stretched minicircles at the
periphery, and are therefore expected not to buckle when in
solution.

III. CONCLUSIONS

Overall, our study is the first to perform a quantitative
analysis of single-molecule data on the structure and
topology of C. fasciculata kinetoplast DNA networks.
While previous works used indirect methods to obtain
the kDNA topology [21], a single-molecule characteriza-
tion of kDNA structure and topology did not exist.
We have employed high-resolution AFM, quantitative

image analysis, and MD simulations to discover that the
kDNA does not display a uniform DNA density, but instead
it has more minicircles in the middle of the network than
the periphery (Fig. 1). On average, we find about 95 mini-
circles per μm2 in the cap of the network and 140 mini-
circles per μm2 at the rim. Additionally, we have used
morphological segmentation to quantify the pore size of the
network (Fig. 5) and found that the mesh size is smaller in
the middle (about 30 nm) compared with the periphery
(about 36 nm). We note that, since the topology of the
kDNA is unchanged during its extraction, our measure-
ments capture its in vivo topology, too, and that this is

intimately linked to the DNA density we measure in vitro.
For instance, if the minicircles had a larger valence, the
network would undergo a smaller extension, reflected in a
larger DNA density when deposited on the mica.
By noticing that the minicircles at the nodes appear

stretched under AFM (also seen in previous EM [20] and
AFM [18] images), we argued that, when not adsorbed onto
a surface, the rim should shrink by ≃ twofold, due to the
entropic elasticity of the minicircles. Motivated by this, we
simulated the behavior of a chainmail of linked rigid rings
under varying degrees of constraint on the size Rg;rim of the
border and observed a buckling transition when Rg;rim was
set to be around 2.5–3 times smaller than that of the fully
flat kDNA (Fig. 4). The buckling transition seen around
Rg;max=Rg;rim ≳ 2 is in good agreement with the expected
entropic shrinking of the kDNA in bulk and, thus, explains
the stable “shower-cap” buckled shape recently seen in
confocal microscopy [14,15]. Both our experiments and
simulations agree with the calculation of the thermal length
scale for kDNA being [Eq. (5)] lth ≃ 1.8 μm; this is around
2.5 times smaller than the radius of fully flat kDNA,
and it marks the transition where buckling (out-of-plane)
deformations are favored over compression (in-plane)
deformations.
Finally, we have used steered molecular dynamics sim-

ulations to obtain ensembles of ring conformations that
are compatible with the DNA distributions in the AFM
images and can resolve certain topological ambiguities
that cannot be resolved in the AFM image. Using these
simulations, we have independently measured the valence of
the minicircles in the network and found that it displays a
broad distribution with a mean around 3. This finding is in
remarkably good agreement with the measures by Cozzarelli
[21] in spite of the fact that they are obtained in two
completely different methods. Differently from the indirect,
bulk quantification of the network topology done in the past,
our high-resolution quantitative imaging allowed us to
discover that the topology and connectivity of the network
(i) is heterogeneous and broadly distributed and (ii) depends
on the distance from the center of the network. It would be
interesting in the future to understand more about the
mechanisms leading to this gradient. Notably, our high-
resolution and MD approach yielded networks that do not
resemble perfect hexagonal arrangements but are instead
random (Fig. 6). In theworkofCozzarelli [21], thehexagonal
arrangement model was imposed due to the assumption of a
perfectly two-dimensional network. We argue that this
approximation is too stringent and that the percolating nature
of the kDNA can be achieved also by allowing rings to
randomly link at the right density [24,25].
We note that, in the language of 2D random networks, a

valence (or coordination number) v ¼ 3 is below the
isostatic value [27], that for 2D networks is vc ¼ 4. This
renders the kDNA a subisostatic, floppy network with soft
(zero energy) modes and zero stress response at strains γ
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below a critical γcðvÞ [45]. At the same time, and although
kDNA networks may resemble suspended membranes or
lipid bilayers, they display a highly unusual structure, made
of DNA minicircles that are thousands of base pairs long.
More specifically, compared with lipid bilayers, kDNA
displays a lower density and larger thickness. For this
reason, we expect its material properties to be markedly
different from that of lipid membranes, which are essen-
tially incompressible and cannot sustain stretching beyond
approximately 5% [47]. Indeed, the estimated stretch
modulus Y ≃ 0.1 pN=μm [Eq. (4)] and its bending stiffness
κ ≃ 1 pNnm are both thousands of times smaller than those
of lipid membranes.
It is perhaps more interesting to compare the kDNA

properties with synthetic mechanically interlocked networks
(MINs) [49], woven and unwoven polymers [50], and DNA
origami [51]. To make a fair comparison, we divide the 2D
Youngmodulus by the thickness of the surface, h ≃ 170 nm,
to obtain E ≃ 0.6 pN=μm2 ¼ 600 Pa. This is orders of
magnitude smaller than those measured for woven and
unwoven polymer surfaces (≃GPa) [50], auxetic DNA
origami (≃1 GPa) [51], and MINs (≃600 MPa) [49]. This
“ultrasoftness” is arguably caused by (i) the much larger
mobility and conformational freedom of the single DNA
rings within the kDNA and (ii) the larger thickness of kDNA
compared with that of typical synthetic 2D materials
(approximately nanometers).
The evidence suggesting that the minicircles in the

kDNA have valence around 3 is intriguing. A random
network with valence 3 is poised near the critical percolation
point [25,52,53] yet below the isostatic point for the onset of
rigidity [27]. Being poised close to the percolation point
ensures that the network is overall connected (thus preserv-
ing the integrity of the genome during replication) yet avoids
the generation of redundant constraints or a topologically
frustrated “overlinked” and rigid network [25]. Perhaps even
more intriguingly, the volume fraction of kDNA in vivo
entails an overlap number P ≃ 14, in turn suggesting that
kDNA minicircles should display a far larger valence if
simply allowed to cross each other freely and randomly. This
suggests that the topology of the network is controlled
in vivo. In this respect, packaging proteins such as KAP
and controlling temporal and/or spatial activity of topoiso-
merase may play a key role [19].
We also mention that, although different species of

trypanosomes have different kDNA structures, they all
display an overall percolating network. We argue that
species with longer minicircles should display an even
larger valence, scaling as v ∼ ρL3ν−1 [54,55] with ν ¼ 1=2
for short rings and ν ¼ 1=3 for longer flexible rings [56]. If
this were not to be the case, it would be strong evidence for
a biological control of kDNA topology implying an evolu-
tionary benefit in keeping v ≃ 3.
In summary, we have here reported a single-molecule

high-resolution quantitative analysis of one of the most

unique and fascinating genomes in nature. We hope that our
work will not only help to unveil the self-assembly and
topological regulation of generic kinetoplast DNA net-
works and their evolutionary pathway, but also provide
some insights on how to synthetically design 2D topologi-
cal soft materials.

IV. METHODS

In order to obtain high-resolution information on the
kDNA structure, we perform AFM on kDNA samples
purified from C. fasciculata (Inspiralis). The kDNA sample
is diluted to a concentration of 50–100 ng=μL in a buffer
solution containing 50 mM MgCl2; then a droplet of it is
deposited onto the mica surface for 1 min followed by 1 mL
deionized water flushing and nitrogen blowing. Imaging is
performed on a Bruker Multimode AFM in Peakforce-HR
mode, using Bruker Scanasyst-air-HR cantilevers with a
nominal resonant frequency of 130 kHz and spring constant
of 0.4 N=m.
In AFM images, the intensity of the pixel is a direct

measure of its height: Brighter pixels correspond to cross-
ings and overlaps of DNA strands. Although the apparent
DNA height and width are affected by the tip force, tip
radius, and nonhydrated conditions, we use isolated plas-
mids—similarly affected by artifacts—as a volume refer-
ence. Thanks to this feature, we can directly map height to
DNA density in each pixel. There can be cases in which
DNA strands (about 2–5 nm wide, depending on salt
conditions) lay side by side in a 10-nm pixel. In these
cases, the intensity of the pixel is not directly proportional
to the underlying mass of DNA. The reference volume is
measured on isolated plasmids that are much less likely to
have multiple strands in one pixel. Therefore, we expect to
slightly underestimate the true DNA density in the network.

A. Morphological segmentation

We use MorphoLibJ [57] with no noise reduction and
tolerance 15. This plugin uses a modified watershed
algorithm to identify objects as basins (the pores) separa-
ted by boundaries (the DNA strands). An image with
overlaid basins is then generated [see Figs. 5(a) and 5(b)]
and analyzed with the “analyze region” function of
MorphoLibJ, which returns a list of the values of area,
perimeter, circularity, and center of mass of all the basins.
The values of pore sizes are then obtained by taking the
square root of the areas. The artifacts inside the contour of
the kDNA are then removed by identifying the outliers with
very large area.

B. Simulations with border constriction

The networks are first built using the NetworkX [39]
PYTHON package, and the corresponding meshes are
analyzed using libIGL [41] for Python. The networks
are built starting from a planar configuration by placing
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on half the nodes of the network, corresponding to second
neighbors, planar rings and then joining those through the
random placement of a set of distorted rings on the
remaining nodes. This procedure ensures that the sign of
the Hopf link between any two rings is picked randomly
between −1 and þ1, avoiding the onset of topological
phenomena such as those reported in Ref. [58]. Using this
strategy, we produce three different topologies. The border
is then identified with the set of rings that are linked only to
two more rings or that are directly linked to one such ring.
More details are reported in Supplemental Material [30].
The kDNA minicircles are then modeled as semirigid
Kremer-Grest polymers [59] made ofm ¼ 60 beads having
diameter σ and connected by FENE bonds. The rings have
persistence length lp ¼ 120σ. Each network is a circular
hexagonal patch composed by n ¼ 604 rings. Different
rings interact only by excluded volume, modeled through a
Weeks-Chandler-Andersen potential. The system is evol-
ved using an underdamped Langevin dynamics with time
step dt ¼ 0.01τLJ and damping γ ¼ 0.1τ−1LJ , where τLJ is the
characteristic time of the simulation. At each time step, we
impose the constraint potential Vconstr ¼ KðRg − Rg;hcÞ2.
These simulations are performed in LAMMPS [40]. The
codes can be found open source [60].

C. AFM-steered simulations

Briefly, we model kDNA minicircles as bead-spring poly-
mers with a persistence length of 50 nm. Each bead is given a
size equal to that of the resolution of the pixel, i.e., σ ¼ 10 nm.
The AFM image is transformed (see the main text and
Supplemental Material [30]) into a series of phantom, static
beads that act as attractors of the DNA beads. The system is
evolved using a velocity-Verlet algorithm and Langevin
dynamics (implicit solvent) with time step dt ¼ 0.01τBr,
where τBr ¼ γσ2=kBT is the Brownian time. For more details
on the force fields used, seeSupplementalMaterial [30]. These
simulations are also performed in LAMMPS. The codes can be
found open source [61].
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