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Most experiments on nanopores have concentrated on the
pore-forming protein a-haemolysin (aHL)1 and on artificial
pores in solid-state membranes2. While biological pores offer
an atomically precise structure3 and the potential for genetic
engineering4, solid-state nanopores offer durability, size and
shape control5, and are also better suited for integration into
wafer-scale devices. However, each system has significant
limitations: aHL is difficult to integrate because it relies on
delicate lipid bilayers for mechanical support, and the fabrica-
tion of solid-state nanopores with precise dimensions remains
challenging. Here we show that these limitations may be over-
come by inserting a single aHL pore into a solid-state nano-
pore. A double-stranded DNA attached to the protein pore is
threaded into a solid-state nanopore by electrophoretic
translocation. Protein insertion is observed in 30–40% of our
attempts, and translocation of single-stranded DNA demon-
strates that the hybrid nanopore remains functional. The
hybrid structure offers a platform to create wafer-scale
device arrays for genomic analysis, including sequencing6.

We produced hybrid nanopores by inserting a single, pre-
assembled a-haemolysin (aHL) protein pore into a small nanopore
fabricated in a solid-state (SS) membrane. One monomer of the
heptameric pore was mutated to include an additional 11-amino-
acid loop at the tip of the b-barrel (Fig. 1a, arrow). This loop con-
tained a single cysteine residue to which a thiol-derivatized 12-base
DNA oligomer was coupled through a disulphide bond, supplying
an attachment point for a long double-stranded DNA (dsDNA)
molecule with a complementary single-stranded end. The result
was a polyanionic tail able to guide entry of the aHL pore into
the SS pore in a specific orientation. This directionality is a
crucial advantage of this arrangement. Conceptually, a single
aHL pore without a tethered dsDNA could also be delivered to a
SS nanopore, but such protein pores would probably not end up
arranged coaxially with the fabricated pores, resulting in non-
functional hybrids.

Insertion of the aHL/dsDNA construct was achieved by electro-
phoretic translocation (Fig. 1b). A single SS nanopore was first fab-
ricated within a thin SiN membrane. This was used as a barrier
between two reservoirs of ionic solution, with the SS pore as the
only connection between the two sides. Application of an electrical
potential across the membrane therefore sets up a field that is highly
localized to the pore and is able to pull charged molecules through
it. Importantly, these SS nanopores are fabricated with a diameter of
2.4–3.6 nm, large enough to allow the guiding dsDNA and the stem
of the mushroom-shaped aHL protein pore to enter, but too small
to allow the aHL cap to pass. Therefore, a dsDNA molecule will be
threaded through the nanopore, pulling the attached aHL until it is
stopped, mechanically, by the constriction. This will leave the cap
facing the cis side of the membrane and the b-barrel facing the

trans side. The small size of the SS nanopore also ensures that the
dsDNA cannot be folded7 during threading, which would lead to
steric hindrance of the seal between the aHL pore and the surface
of the SiN membrane.

In a typical insertion experiment, we first observe some transient
changes in the measured conductance of the SS pore (Fig. 2a,I),
characteristic of dsDNA translocation through a small SS nanopore8

(Supplementary Fig. S1). These events arise from unconjugated
dsDNA in the measurement solution. Such events are typically fol-
lowed by a brief plateau of lower conductance (Fig. 2a,II) and then
an irreversible transition to a much lower conductance level
(Fig. 2a,III). We interpret the brief (,500 ms) plateau in phase II
as a result of aHL-conjugated dsDNA in the pore while the
protein interacts with the surrounding membrane surface and
settles into position. This is supported by the fact that this plateau
is always observed at about the same conductance level as the pre-
ceding dsDNA events (Supplementary Fig. S2). The final (phase
III) conductance level has an average value of 1.0+0.5 nS (taken
over 21 observed capture events, each in a unique SS nanopore;
Supplementary Fig. S3), in good agreement with the 1.0 nS conduc-
tance of aHL in lipid bilayers under the same solvent conditions9,10.
The variation in conductance between individual hybrid pores
is probably a result of leakage currents around the aHL or slight
deformation of the protein upon insertion.

Successful insertion is affected by many factors. For instance, to
accommodate the protein, the initial SS nanopore must be stable
within the narrow range of diameters given above. With small-
diameter nanopores, changes in size and shape have been observed
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Figure 1 | Molecular construct and experimental setup. a, aHL

heteroheptamer with a 3 kbp dsDNA attached via a 12-nucleotide oligomer

to one protein subunit. The arrow indicates the position of the disulphide at

the connection point (see text). b, Experimental setup, in which protein-

conjugated dsDNA is electrophoretically translocated through a narrow SS

nanopore.
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in solution over time due to surface rearrangement11, which some-
times cause the SS nanopore to grow beyond the nominal size for
hybrid pore production. Regardless, we observed protein insertion
in 30–40% of our attempts (21 of �60 pores). The final configuration
of hybrid pores has been observed to be stable for as long as several
hours, or even days (Supplementary Fig. S4). Stability could probably
be improved through the use of covalent crosslinking between the
protein and the SS membrane, but the hybrid structures realized in
bare SS pores already demonstrate good stability under both positive
and negative applied voltages (Fig. 2b).

aHL itself has a slightly positive net charge, as measured by its
translocation through a 30-nm-wide SS nanopore under a positive
potential (data not shown). Unconjugated proteins therefore never
enter the nanopore, as they are not electrophoretically transported
by the application of a negative potential to the cis chamber.
Furthermore, the added hydrodynamic drag associated with the
bulky aHL ensures that the protein approaches the pore only after
the dsDNA has passed through it, in a manner that leaves the
protein lodged in the constriction.

Following protein insertion, no further transient conductance
changes are observed. This suggests that a single aHL pore has
been inserted in the SS pore mouth, because the 1.4-nm inner diam-
eter of the protein pore3 is insufficiently large to allow dsDNA
(diameter, 2.2 nm) to pass. Combined with the above conductance
measurements, this observation is strong evidence that a single aHL
pore is introduced into the SS nanopore rather than, for instance,
knotted dsDNA. To demonstrate that the aHL pore is functional
in the hybrid structure, we investigated the translocation of single-
stranded DNA (ssDNA) as a test molecule for size selectivity. As
demonstrated previously9,10, with a diameter of �1.2 nm, ssDNA
molecules are able to translocate through the narrow aperture of
the aHL pore, and would result in translocation events if the
hybrid structure were functional.

Indeed, upon the addition of single-stranded poly(dA)100 oligo-
mers (1 ng ml21) to the cis side of the chamber, transient conduc-
tance blockades are observed (Fig. 3a), indicating the passage of
individual nucleic acid molecules and, importantly, demonstrating
the presence of a functional, non-denatured aHL protein within
the structure. Translocation events through the hybrid pore are
easily resolvable with a good signal-to-noise ratio. We note that
Fig. 2a shows an increase in current noise following insertion of

aHL, but this is not always the case (cf. Supplementary Fig. S2).
Indeed, we observe that low-frequency (1/f ) noise after aHL inser-
tion can vary slightly compared with that of the original pore, but
high-frequency noise (.1 kHz) usually remains unchanged
(Supplementary Fig. S5). The latter is due to charge noise associated
with the large SS membrane in contact with the measurement
buffer12, which suggests that noise levels approaching those of
lipid-bound aHL could be achieved through previously demon-
strated methods such as polydimethylsiloxane (PDMS) coating of
the chip13.

The distribution of ssDNA events recorded in a hybrid nanopore
is shown in Fig. 3b (see also Supplementary Fig. S6). The measured
current blockade (DG) of these poly(dA)100 translocation events
(Fig. 3b, top) follows a bimodal distribution, consistent with pre-
vious measurements on aHL pores in lipid bilayers10. Gaussian
fits yield peaks centred at 0.3 and 0.6 nS, which differ somewhat
from previous experiments on aHL pores in lipid bilayers, which
yielded peaks at 0.8 and 0.9 nS (ref. 10). This, again, might be
attributable to some leakage current around the body of the
protein or deformation induced by the insertion. We find a dwell
time distribution (Fig. 3b, bottom right) with a peak value of
360 ms, in excellent agreement with the characteristic dwell time
of 330 ms reported previously10.

In summary, we have shown that individual aHL protein pores
can be inserted into a SS nanopore in a controlled manner to
form a functional hybrid nanopore that combines the precise
structure and protein engineering possibilities associated with a
biological pore with the robustness and potential required for the
fabrication of an integrated device. We present three main pieces
of evidence for this. First, upon insertion, the measured conduc-
tance falls to a level that agrees well with that for aHL pores in
lipid bilayers. Second, at this low conductance level, there are no
further signatures of translocation when only dsDNA is present in
the solution. Finally, the introduction of ssDNA oligomers once
again produces translocation events, demonstrating protein
functionality. Without the delicate bilayer, our hybrid structures
are found to be durable. For example, as a test of mechanical
strength, a large voltage applied across an undrilled SS membrane
yields a failure voltage of �3 V (Supplementary Fig. S7); the
highest reported voltage stability for lipid bilayers is �800 mV in
a micropipette system14.
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Figure 2 | Directed aHL insertion. a, A typical event, in which an aHL protein pore inserts into a SS nanopore. The figure shows unconjugated dsDNA

translocations (I), followed by a brief plateau indicating ‘pre-insertion’ (II), and finally a stable, low conductance level (III). A voltage of V¼2600 mV was

applied to the cis chamber. Top: sketches of the three phases in the insertion process. b, I–V response of a SS nanopore before (black) and after (red)

insertion of aHL, demonstrating stability under both positive and negative applied voltages. Linear fits (solid lines) yield a resistance increase from 143 MV to

815 MV upon insertion.
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Importantly, incorporating the biological pore into a solid-state
device opens up avenues towards the creation of wafer-scale parallel
device arrays that may be useful for genomic sequencing. Future
efforts towards this end will concentrate on establishing the tech-
niques proven useful for nucleotide-specific measurements with
aHL in lipid bilayers6 into arrays of individually addressable SS
nanopores. Furthermore, our measurements show that the aHL
protein pore can be studied outside a lipid bilayer without lateral dif-
fusion. In such a format, the hybrid system could be used to measure
the force15 on a single molecule within a biological pore, a physical
quantity central to an understanding of the translocation process. In
addition, the platform that we have established here can potentially
be expanded to study different membrane proteins (transporters,
receptors, and so on) through solubilization and similar attachment
to a polyanionic molecule.

Materials and Methods
Solid-state nanopores. Thin (20 nm), freestanding membranes of silicon nitride
were formed in silicon wafers using common microfabrication techniques16. The
tightly focused beam of a transmission electron microscope (300 kV; beam diameter,
3.5 nm) was then used to locally ablate the membrane surface and form a single
nanopore. Pore size was controlled by blanking the electron beam upon formation of
a pore with the desired dimensions. Pore diameters ranged between 2.4 and 3.6 nm

to ensure an optimal fit to the aHL pore. These diameters correspond to pore
resistances of �140–190 MV under our buffer conditions (see below). Immediately
after pore formation, the membrane chip was stored in a 50% ethanol/water solution
until use so as to maintain cleanliness.

Engineered aHL pores. Monomeric aHL was produced with a cysteine-containing
11-amino-acid loop (GGSSGCGSSGG) replacing residue 129, and an extension
of 8 Asp at the C-terminus. These monomers were mixed with M113N mutant
aHL monomers4 and allowed to form heteroheptameric protein pores on rabbit red
blood cell membranes. The membrane-bound proteins were then separated by
sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE)17 to obtain
pores with subunits in a ratio of 1:6 (aHLCys:aHLM113N), which were extracted
from the gel into buffer containing 10 mM Tris-HCl, 2 mM EDTA, pH 8.5
(TE 8.5 buffer), 0.1 mM dithiothreitol (DTT) and 0.1% SDS. DTT was then
removed by means of buffer replacement using centrifugal ultrafiltration
(Microcon YM10). The material was stored at 280 8C between successive steps.
Electrical measurements on these heteroheptamers showed that they form active
pores in lipid bilayers.

In a separate process, 1 mM thiolated DNA oligomers with the sequence
5′-GGGCGGCGACCT-thiol (Sigma) in 100 ml TE buffer (pH 8.5) was treated with
10 mM DTT for 1 h at room temperature. Excess DTT was removed by five cycles of
adding 200 ml ethyl acetate, vortex mixing, centrifuging at 13,000 r.p.m. for 1 min,
and removal of the organic phase. The oligomers were passed over a Bio-Spin P6
column (BioRad) pretreated with TE 8.5 buffer and then incubated with 10 mM
2,2′-dipyridyl disulphide (Aldrich) for 1.5 h at room temperature. Excess dipyridyl
disulphide was removed by five cycles of adding 200 ml diethyl ether, vortex mixing,
centrifuging at 13,000 r.p.m. for 1 min, and removal of the organic phase. Activated
oligomers were added to the purified heteroheptamers, followed by a centrifugal
ultrafiltration (Microcon YM50) to remove excess DNA. The material was stored at
280 8C before use.

Protein–DNA construct. l-phage DNA (New England Biolabs) was digested with
the restriction enzyme SfoI. This enzyme leaves blunt ends, resulting in two
fragments (45679 bp cosL and 2823 bp cosR), each with a 12-nt overhang. Gel
purification was performed to select the smaller fragment (overhang sequence
5′-AGGTCGCCGCCC), which was subsequently hybridized with the
complementary oligomer attached to the heteroheptamer described above by
incubation for 30 min at room temperature.

Ion current measurements. A chip with a single solid-state nanopore was mounted
in a custom flow cell, and measurement solution (1 M KCl, 10 mM Tris buffer,
pH 8.0) was added to both sides of the membrane. Electrical measurements were
performed using Ag/AgCl electrodes attached to a patch-clamp amplifier (Axopatch
200B, Axon Instruments). Signals were acquired at 200 kHz and low-pass-filtered at
20 kHz before digitization. For the poly(dA)100 translocation experiments in Fig. 3
and Supplementary Fig. S6, the conductance blockade (DG) of each event
was defined as the difference between the average baseline and the average event
level (G0 – Gevent).
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Figure 3 | DNA translocation through a hybrid aHL/SS nanopore.

a, Recorded current trace through a hybrid nanopore (V¼2300 mV,

applied to the cis side), showing the baseline conductance directly after

insertion (left) and events upon the addition of poly(dA)100 (middle). On the

right is an expanded view of a typical event (the red line indicates a square

pulse fit). b, Event distribution of poly(dA)100 translocations, with

conductance blockade values (DG) and dwell times (Dt) represented as

histograms above and to the right, respectively. Solid lines represent

Gaussian fits to the data.
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