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Non-Bias-Limited Tracking of Spherical Particles, Enabling Nanometer
Resolution at Low Magnification
Marijn T. J. van Loenhout, Jacob W. J. Kerssemakers, Iwijn De Vlaminck, and Cees Dekker*
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
ABSTRACT We present a three-dimensional tracking routine for nondiffraction-limited particles, which significantly reduces
pixel bias. Our technique allows for increased resolution compared to that of previous methods, especially at low magnification
or at high signal/noise ratio. This enables tracking with nanometer accuracy in a wide field of view and tracking of many particles.
To reduce bias induced by pixelation, the tracking algorithm uses interpolation of the image on a circular grid to determine the x-,
y-, and z-positions. We evaluate the proposed algorithm by tracking simulated images and compare it to well-known center-of-
mass and cross-correlation methods. The final resolution of the described method improves up to an order of magnitude in three
dimensions compared to conventional tracking methods. We show that errors in x,y-tracking can seriously affect z-tracking if
interpolation is not used. We validate our results with experimental data obtained for conditions matching those used in the simu-
lations. Finally, we show that the increased performance of the proposed algorithm uniquely enables it to extract accurate data
for the persistence length and end-to-end distance of 107 DNA tethers in a single experiment.
INTRODUCTION
Tracking of individual micron-sized particles by video
microscopy has numerous applications in biophysics, partic-
ularly in magnetic and optical tweezers (1). One of the main
advantages of video microscopy lies in its flexibility, ease
of implementation, and ability to track a large number of
objects (2). Apart from the camera and image-system hard-
ware, the method is entirely based on software and requires
no special hardware like laser-based detection schemes
often employed in optical tweezers (3–6). Software can
therefore easily be reused and transferred between different
applications. Ongoing advances in digital cameras and com-
puting hardware continue to increase the applicability of
video microscopy. Megapixel-size cameras now allow the
monitoring of thousands of objects, and fast acquisition
rates allow cameras to be used for particle tracking in the
kHz range (7).

The final resolution of any tracking method depends on
the accuracy, which is a measure of the systematic error
or bias, and the precision, which is a measure of the statis-
tical error or scatter. With decreasing magnification, the area
mapped onto a single pixel increases and the pixel bias,
related to mapping of the intensity on the discrete pixel
grid, becomes more important than the error due to scatter.
High signal/noise ratios are commonly achieved when
tracking nondiffraction-limited particles and these often
reduce the statistical error well below the error due to
bias. There is thus a need for tracking methods that account
for this bias such that the bias is reduced to a level below the
statistical error or scatter.
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The procedure for tracking single fluorophores or other
diffraction-limited objects by fitting with the point-spread
function of the microscope or an approximation with a
two-dimensional Gaussian was recently shown to be cap-
able of achieving the theoretical minimum uncertainty
(8,9). However, for objects much larger than the wavelength
of light (d > l) or for significantly defocused objects, the
intensity profile is no longer accurately described by a
Gaussian. A different tracking method is therefore required
when dealing with such images. A large number of methods
have been developed, and they can be roughly divided into
two categories: first, methods that perform a direct calcula-
tion of the subpixel location (center of mass, Gaussian fit)
(10,11); and second, methods that compare the image with
another image (be it a predefined kernel, a mirror image,
or a previous image) and perform a subsequent fitting step
to achieve subpixel resolution. These methods include cross
correlation and the sum of absolute differences (12,13).
Several of these tracking methods were compared previ-
ously (14) and two-dimensional cross correlation proved
to be the preferred method for tracking nondiffraction-
limited objects. However, a significant contribution of pixel
bias to the final resolution remains for the cross-correlation
method, which can severely limit the final tracking
resolution.

We may understand the pixel-bias error to be due to a loss
of information when an image is sampled on a discrete grid
(Fig. 1, A and B) (15). Information on the distribution of
intensity within a single pixel is replaced by the mean inten-
sity at the pixel center. If the spatial frequency spectrum of
the image exceeds half the sampling frequency, information
is lost according to the Nyquist theorem. For example, the
centroid of the original image therefore need not be equal
to the centroid of the sampled image. This is illustrated in
doi: 10.1016/j.bpj.2012.03.073
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FIGURE 1 Origins of pixel bias. (A) Diffraction pattern of a bead. (B)

Zoom-in on the diffraction pattern showing the artifacts created by the

sampling process. (C) A Gaussian intensity profile (solid curve) is sampled

by three pixels. The information of the intensity distribution within a pixel

is lost by the sampling process and is replaced by a single intensity at the

center of the pixel (circles). The centroid of the pixel intensities (dashed

line) can have an error or pixel bias compared to the true center position

of the Gaussian (dotted line). (D) The pixel bias shows a periodic variation

when displacing the Gaussian profile across the pixel grid.
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Fig. 1 C, where a Gaussian intensity profile is sampled by
three pixels. The result of the sampling is an error in the
position of the centroid calculated using the sampled data
with respect to the true centroid position. This error or pixel
bias can be substantial and is periodic in the pixel grid
(Fig. 1 D). Kernel-based tracking methods may suffer in
a similar way from pixel bias. To obtain the final position
these methods require a subpixel fitting step, where the
exact shape of the peak is partly lost in the sampling process,
leading to a possible error in its determination (16).

Pixel bias can be reduced by increasing the magnification
and thereby sampling well above the Nyquist frequency.
This is however not always possible nor desirable as it
reduces the field of view and may also decrease contrast.
If the exact intensity profile of the tracked object is known,
as is the case for diffraction-limited objects, this information
can be used to correct for the information loss due to
sampling and thus eliminate bias. If, however, the exact
intensity profile is not known, the error due to bias will
depend on the specifics of the algorithm.

Here, we describe and evaluate what to our knowledge is
a new method for tracking micron-sized beads, using an
algorithm specifically aimed at reducing the pixel bias,
thereby increasing the final tracking resolution. Our quad-
rant-interpolation (QI) algorithm makes use of the circular
geometry of the diffraction pattern to resample the image
on a circular grid. The resampling procedure reduces bias
in two ways. First, it allows for a degree of upsampling,
which increases the spatial sampling frequency, thereby
reducing bias. Second, the resampling on the polar grid
effectively removes the integer spacing of the pixel grid
and thus averages out the errors due to pixel bias. The
performance of the algorithm is evaluated by tracking
computer-generated images derived from experimental
images and comparing with two commonly used methods:
center of mass (COM) (14,17) and cross correlation
(XCOR) (12,13,18). We evaluate these different methods
for scatter, bias, and resolution at different magnifications,
as well as the influence of the signal/noise ratio. We validate
the improved performance of the presented algorithm for
experimental conditions closely matching the simulations.
The ability of the new algorithm to accurately track at low
magnification uniquely enables highly parallel single-
molecule experiments. We show that we were able to obtain
accurate persistence length and end-to-end distance data for
107 DNA molecules in a single multiplexed magnetic-
tweezers experiment. The QI algorithm thus enables a vast
increase in the throughput of single-molecule experiments
and thereby enables the study of rare events and the acqui-
sition of large statistical data sets from individual experi-
mental runs.
MATERIALS AND METHODS

Experimental setup

Images, for the experimental data and the artificial image construction,

were acquired with a Falcon 1.4M100XDR (Dalsa) camera in 8 bit mode

using a Nikon CFI Plan Apo 50� oil immersion (NA 0.9) objective and

a collimated green LED as light source. A 300-mm tube lens was used to

obtain an effective magnification of 75�. Images were saved in tif format

and processed offline using Labview (National Instruments, Austin, TX).

A sample of fixed beads was prepared by immobilizing 2.8 mm magnetic

beads (Dynal M270, Invitrogen, Carlsbad, CA) on a glass coverslide by

baking at 180�C for 10 min and a flow cell was constructed by sandwiching

a second coverslide on top using a parafilm spacer. The z-correction factor

was determined experimentally by creating a flow cell with a 50-mm gap,

which allowed to focus on the top and bottom surfaces. This flow cell

was filled with water and immersion oil separated by a thin parafilm barrier.

Subsequently, the required displacement of the objective, dz, to achieve

focus at the top and bottom surfaces in both immersion oil and water

was measured. The correction factor was then simply given by

dzoil=dzwater ¼ 0:8 for our setup. We note that this correction factor is signif-

icantly different from the small-angle approximation based on the index of

refraction of the media: nwater=noil ¼ 1:33=1:51 ¼ 0:88, which is not valid

for objectives with high numerical aperture.
Evaluation procedure and artificial image
construction

Tracking algorithms are often evaluated by tracking a stationary object,

where the fluctuations in the tracked position are used to estimate the accu-

racy of the algorithm. Measurements using immobilized beads or markers,

however, provide a too-optimistic value of the resolution, as they do not

take the systematic errors or pixel bias into account. To measure the true

resolution of a tracking algorithm, one must compare the tracked position
Biophysical Journal 102(10) 2362–2371
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with its actual position, which is experimentally complicated but is easily

achieved with computer-generated images. We therefore artificially gener-

ated images, simulating a stepwise movement of a particle over the image

grid, similar to the methods of Cheezum et al. (14).

We used experimentally acquired images to construct artificial images.

The advantage of this a posteriori approach is that a close match to exper-

imental images is guaranteed and no information of the imaging system

is required. First, images of a 2.8-mm magnetic bead were recorded at

75� magnification for 200 different focal positions separated by 100 nm,

by stepwise moving of the objective in z. Next, these images were used

to calculate radial intensity profiles at each z-position, resulting in a

z-lookup table (Fig. 2 E). Typically, a regularly expanding pattern of fringes
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FIGURE 2 Schematic representation of the QI tracking algorithm. (A)

First, an approximate center position is obtained (red cross) by a different

trackingmethod, e.g., COM. Second, radial intensity profiles are constructed

by bilinear interpolation on a circular gridwith spacing dq, dr. For each quad-

rant, the intensity profiles are summed to obtain a radial intensity profile for

each quadrant (red curve). (B) Intensity profiles of left/right quadrants are

concatenated to represent the pattern in the x-direction (red curve), and

subsequently, a cross correlation with its mirror image (black curve) is per-

formed to obtain the center position of the pattern. (C) The peak in the cross

correlation is fit to obtain the final x-position. (D) z-lookup table of images

comparable to Fig. 1 A made without interpolation. (E) z-lookup table

made by summing the radial intensity profiles of four quadrants obtained

by interpolation on a circular grid. The brightest fringewas fit by a parabolic

function (blue dashed line). Using this parabolic fit, all radial intensity

profiles were scaled in the radial direction and averaged to create a single

generic curve (red curve). (F) Artificial image generated using the generic

curve. Poissonian noise was added to obtain different SNRs. (G) Tracking

result of simulated images that were regularly displaced by 0.1 pixel in the

x-direction at 30�magnification and SNR of 30, offset vertically for clarity:

black, COM; blue, XCOR; green, QI; and red, actual simulated position.
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is visible, which we approximate by the radial expansion of a single inten-

sity-profile function (Fig. 2 E, red line). A parabolic fit of the brightest

fringe was used to map the monotonous expansion of the fringes as a func-

tion of defocus (Fig. 2 E, blue dashed line). By scaling the radial intensity

profiles at each defocus position, an average generic radial profile was con-

structed, which, together with the parabolic fit of the brightest fringe, now

suffices to reconstruct a noise-free pattern at any translational (x,y) and

defocus (z) position. We thus have generated a perfect, noise-free image

of a bead, henceforth referred to as the reference pattern. To simulate the

effect of shot noise, Poissonian distributed noise was finally added to the

reference pattern (Fig. 2 F).

Next, we generated an image series representing a movement of two

pixels across the camera image grid in 40 steps. The z-position of the

bead was set at 10 mm above the focal plane, corresponding to the middle

of the lookup table. At each step, 250 different images were created by add-

ing shot noise to the initial generated image. The signal/noise ratio (SNR)

was subsequently determined from the generated images as

SNR ¼ S

4s
� 1; (1)

where the signal range, S, is defined as the difference between the

maximum and minimum intensities of the image, S ¼ ðImax � IminÞ. The
noise is determined from a region of the image containing no signal,

where 4s sets a 95% confidence bound. The factor of 1 is subtracted to

account for the apparent increase in the measured signal range due to

the addition of noise. Images at different magnifications were obtained

by mapping the reference pattern on different pixel grids relative to the

75� magnification of the initial experimental images. Subsequently, these

images were tracked with the proposed QI method, as well as with COM

and COR algorithms (Fig. 2 G (offset for clarity)). The scatter and bias

were independently determined. Scatter was calculated as the standard

deviation of the tracked position at each step. Bias was calculated as

the deviation of the determined mean position from the simulated position

minus the overall error in mean position for all steps. Subtracting the over-

all error in mean position removes any nonposition-dependent difference

between the simulated position and tracked position, which is in most

practical cases irrelevant, as it will be equal for all tracked objects in a field

of view. This approach allows us to determine the bias and scatter sepa-

rately as a function of the noise, magnification, and z-position of the

image.
Tracking software

The QI tracking method was implemented in Labview software. The base

tracking algorithm, as well as a standalone program capable of loading

and tracking images, is available for download from the author’s website:

http://ceesdekkerlab.tudelft.nl/download
QUADRANT-INTERPOLATION ALGORITHM

x,y-Tracking

The proposed QI algorithm uses the circular geometry of the
diffraction pattern to strongly suppress bias, and it was
implemented in Labview software; for details, see Tracking
software, above.

The QI algorithm consists of four basic steps to determine
the x,y-position:

1. In the first step, the center of the particle is roughly
identified by a background-corrected COM (algorithm
described in Section S1 in the Supporting Material),

http://ceesdekkerlab.tudelft.nl/download
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followed by a 1D XCOR (Section S2 in the Supporting
Material). The accuracy of this first step is not crucial,
and it can be substituted by any method capable of locat-
ing the center of the particle to within ~1 pixel (Fig. 2 A,
red cross).

2. The second step uses this first (xest, yest)-position to calcu-
late a radial profile of the intensity of the particle for each
quadrant on a circular grid, where points are spaced by dr
and dq, in radial and angular dimensions, respectively.
The values at the circular grid positions are calculated
by bilinear interpolation of the four nearest-neighbor
pixel values. A single radial-intensity profile is created
that represents the quadrant (Fig. 2 A). The grid is gener-
ally chosen to oversample in the radial direction com-
pared to the pixel size, i.e., dr < pixel spacing, and is
calculated for each quadrant of the image (i.e., top
left, top right, bottom right, bottom left), yielding four
intensity profiles qTL(r).qBL(r). These four radial pro-
files will be used to determine both the x,y- and the
z-position.

3. In the third step, relative shifts in the radial profiles
are used to extract a correction to the initial (xest, yest)-
position. The sum of the right profiles, qR ¼ qTRþBR, is
concatenated with the left equivalent qL ¼ qTLþBL,
thus creating an intensity profile, Ix, that represents the
horizontal shift,

IxðrÞ ¼ qLð�rÞ k qRðrÞ; (2)

where k denotes the concatenation (Fig. 2 B). The
resulting intensity profile, Ix(r), is now cross correlated
by Fourier transform with its mirror profile, Ix(�r),

Xxx0 ðrÞ ¼ IFFTðFFTðIxðrÞÞ � FFTðIx0 ð�rÞÞÞ; (3)

where IFFT and FFT are the inverse and regular fast

Fourier transforms, respectively, and FFTðIx0ð�rÞÞ
denotes the complex conjugate. The resulting cross-
correlation function Xxx0ðrÞ is a curve with spacing dr
and a peak at the position corresponding to twice the
displacement dr of the particle from the center of the
circular grid. A similar routine is followed in the y-direc-
tion by processing qT ¼ qTLþTR and qB ¼ qBLþBR.

4. The final step in the algorithm determines the sub-bin
peak position with a five-point parabolic fit to the cor-
relation function, yielding a shift of dr (Fig. 2 C). For
corrections smaller than one pixel unit, i.e., small com-
pared to the radial pattern fringe spacing, dr relates to
a truly x-directed pattern shift, dx, via a simple geomet-
rical correction, dx ¼ dr=ðp=2Þ, which accounts for the
summation of the profiles, and their cosine-projected
displacements, over a hemisphere. The tracked position
thus finally is x ¼ xest � dx. The y-position is calculated
analogously.

The second step of the algorithm, where radial intensity
profiles are calculated, allows a choice of the parameters
of the polar grid, dq and dr. In general, the final resolution
increases with a higher sampling density in the radial direc-
tion (i.e., smaller dr). However, empirically we have found
that the final resolution does not increase further when dr is
reduced below z1/3 of a pixel unit. The angular spacing,
dq, is chosen to sample all pixels, i.e., dq� rmax ¼ pixel
size, where rmax is the maximum radius used to construct
the radial intensity profile. The final resolution does not
improve if dq is decreased further. However, dq may be
increased considerably without severe loss in tracking reso-
lution. This enables one to trade off accuracy for speed by
sampling on a more widely spaced grid. The execution
speed of the algorithm, when sampling all pixels, is suffi-
cient for most applications and in its current implementation
is ~0.01 s for a 128 � 128-pixel image on a 2-GHz Intel
core2 CPU.
z-Tracking algorithms

Methods for tracking the axial or z-position of a particle
generally rely on first creating a lookup table of radial
profiles by shifting the objective in known steps (13,19).
Here, we employ the following method: an image stack is
acquired by changing the focus of the objective, typically
in 200 steps of 100 nm. Subsequently, a z-lookup table is
constructed by calculating the radial profile at each focus
position. For the COM method, the pixel intensities were
directly mapped into radial bins with 1-pixel spacing
(Fig. 2 D). For the XCOR method, the pixel intensities
were distributed by linear interpolation into radial bins
with 1-pixel spacing. For the QI tracker, the radial profiles,
calculated using bilinear interpolation over four quadrants
with a dr of 1/3 pixel, were averaged, resulting in a much
smoother lookup table (Fig. 2 E).

To determine the z-position for a given image, the
c2-difference of the radial profile with the planes of
the z-lookup table was calculated. The minimum of the
c2-difference corresponds to the best matching radial profile
and therefore to the z-position of the object. To achieve
a resolution smaller than the step size of the lookup table,
the final z-position was obtained by a parabolic fit of this
minimum. When using an oil-immersion objective, the
refractive index of the immersion medium is normally not
equal to the refractive index of the medium containing the
tracked object. Therefore, a displacement of the objective,
used to make the z-lookup table, is not equivalent to
a displacement of the object during a measurement (20).
We use an experimentally determined linear correction
factor (0.80 for our system, see Materials and Methods),
to correct for this scaling of the z-position.
Biophysical Journal 102(10) 2362–2371
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RESULTS

Using the procedure outlined above, we evaluated the influ-
ence of magnification, SNR, and cross talk on tracking of
nondiffraction-limited particles. We compare the newly
developed QI algorithm to the well-established COM and
XCORmethods. In the results below, the standard deviation,
s, is shown in units of pixels at different magnifications for
scatter and bias. An example of the scatter and bias at 75�
magnification is shown in Fig. 3 B. The total resolution was
subsequently calculated from the bias, sbias, and scatter,
sscatter, at each magnification as
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FIGURE 3 Scatter, bias, and resolution in the x-direction for simulated

data as a function of magnification at an SNR of 30. (A) Simulated images

at different magnifications. (B) Examples of scatter and bias at 75� magni-

fication for a displacement across two pixels. (C) Scatter as a function of

magnification. (D) Bias as a function of magnification. The error due to

pixel bias was comparable to scatter for COM and XCOR, but significantly

reduced for the QI tracker. (E) Resolution in nanometers for a 7.5-mm pixel

size as a function of magnification.
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stotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
bias þ s2

scatter

q
(4)

and is shown in nanometers for the given magnification
based on a 7.4-mm pixel size, matching the pixel size of
the camera used to obtain the experimental images. Unless
stated otherwise, all results were evaluated at an SNR of 30.

The experimentally obtainable maximum signal/noise
level for an 8-bit camera can be estimated to be a~30, based
on the signal range and expected shot noise. The maximum
peak-to-peak signal range, S, without clipping, will be
approximately half the bit depth i.e., S ¼ 128 for the 8-bit
camera. Assuming a pixel-well depth of 100,000e for a
typical camera, the shot noise calculated for the median
intensity of 50,000e will be s ¼ 256=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
50000

p
z1:1 bit,

which results in a signal/noise ratio of SNR ¼ S=ð4sÞz28.
Higher SNRs can be obtained by using cameras with a larger
pixel-well depth and using cameras capable of working at
more than 8-bit. However, in most cases, shot noise will be
limiting, as it is generally larger than 0.5 bit.
x,y-Tracking

The results for in-plane tracking show that the stochastic error
or scatter remains nearly constant for all three algorithms
(Fig. 3C). Only at magnifications below 20� does the scatter
increase markedly for both the XCOR and QI tracker, which
likely results from undersampling of the spatial pattern.
Above 15� magnification, the QI tracker has improved
performance compared to both COM and XCOR algorithms.

Bias performance is more sensitive than scatter perfor-
mance to magnification for all algorithms, and there are
larger differences in tracking error between the tracking
algorithms (Fig. 3 D). As expected, bias decreases with
magnification, as the image is spread out over more pixels,
reducing the effect of pixel borders. The QI algorithm shows
a fast decrease in bias, reaching a low-bias region above 50�
magnification. Bias for the COM and XCOR methods
reduces more slowly with magnification and never reaches
the performance of the QI method. It is important to note
that the bias for the COM and XCOR algorithms is larger
than the scatter for most magnifications, thereby limiting
the total resolution (Fig. 3E). In the absence of bias, the reso-
lution of all tracking algorithms would improve linearly with
magnification, as scatter measured in pixels stays constant.
However, the bias significantly affects performance, espe-
cially for the COM and XCOR tracking routines. The QI
algorithm shows superior performance, because it is not
bias-limited and resolution indeed scales with magnification
from 30� upwards, where scatter is the main source of error.
z-Tracking

Tracking resolution in the z-direction is generally less than
the x,y-resolution, as the expansion of the diffraction pattern
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changes only slowly with z-position (Fig. 2, D and E). Our
system has ~1 nm radial expansion for a 7-nm z-displace-
ment, as calculated from the local slope of the fringe pattern
in the z-lookup table. The resolution in z was evaluated by
a simulated displacement over 2 mm in 100 steps at constant
x,y-position. The result is shown in Fig. 4 A: the QI algo-
rithm achieves a resolution below 10 nm for magnifica-
tions >25�. The COM and XCOR algorithms perform
less well, which is due to propagation of x,y-tracking errors.
Using the more accurate x,y-positions obtained from the QI
tracker as input for the COM- and XCOR-based z-tracking
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p
.

algorithms showed improved performance, comparable to
that of the QI z-tracking methods (data not shown), which
underlines the importance of accurate x,y-tracking for accu-
rate z-tracking.

To evaluate the cross talk between in-plane tracking and
z-tracking, we evaluated the z-resolution while displacing
the bead image in the x-direction at constant z-position
(Fig. 4 B). The QI algorithm again shows the best perfor-
mance at all magnifications. The COM noninterpolating
z-tracking algorithm performs more than an order of magni-
tude worse than the interpolating QI and XCOR methods.
This very large error is due to the noninterpolating
z-tracking algorithm used for the COM tracker, which
simply maps the intensity of a pixel to 1-pixel-wide bins
in the radial intensity profile. The XCOR z-tracker, on the
other hand, uses linear interpolation to distribute the inten-
sity between two radial bins and performs significantly
better. If the noninterpolating COM z-tracking method
was used in the XCOR algorithm, performance decreased
notably, becoming comparable to that of the COM (data
not shown). Interpolation of the radial profile thus enables
much better suppression of in-plane movements, irrespec-
tive of the tracking algorithm used.

Finally, we also evaluated the sensitivity of the x-resolu-
tion with respect to movements in z (Fig. 4 C). The cross
talk in this case is small compared to the error for in-plane
movements. Therefore, the x,y-resolution will generally
only have a minor contribution from cross talk due to
z-movements. At very low magnifications, both the QI and
XCOR methods show a strong degradation of resolution,
as the diffraction pattern is not correctly sampled anymore.

The above results demonstrate that the resolution in
tracking of an object moving in three dimensions can be
dramatically worsened by cross talk present between move-
ments in the x,y- or the z-direction. To gain further insight
into the effects of cross talk, we calculated the resolution
in individual x,y- and z-directions, as well as the total reso-
lution at 75� magnification with an SNR of 30 (Fig. 4 D).
This shows that the QI tracker has the lowest level of abso-
lute cross talk, and that XCOR and COM have higher levels
of absolute cross talk in the x,y-direction. Most notable is
the very severe cross talk between x,y-movements and
z-tracking, resulting in a significantly reduced performance
for the noninterpolating COM z-algorithm.
Signal/noise ratio

To determine the performance of the tracking methods as
a function of SNR, we evaluated the resolution at SNRs
between 2 and 100, as defined in Eq. 1 at a constant magni-
fication of 75�. As expected, the scatter decreases mono-
tonically with increasing SNR (Fig. 5 A, solid symbols).
At low SNR, the QI method performs better compared to
XCOR, which is explained by the fact that it samples all
pixels, whereas XCOR only samples a subset, resulting
Biophysical Journal 102(10) 2362–2371
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matches well with the experimental data.
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in higher effective noise. The bias (Fig. 5 A, open symbols)
is influenced in a more complex way by the SNR:
COM and QI show a decrease in bias with increasing
SNR. The bias for the XCOR is, however, independent of
the SNR. It is important to note that the bias for the
COM and XCOR methods is larger than the scatter for
most SNR, and bias thus dominates the total resolution
(Fig. 5 B).

To gain insight into the general effects of magnification
and SNR on tracking resolution, we developed a simple
analytical expression of the achievable resolution that is
based on the signal amplitude and SNR of an image
(method outlined in Section S3 in the Supporting Material).
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This prediction (Fig. 5 B, gray line) reproduces the SNR
behavior of the QI tracker within a factor of 2 for
SNR < 40. For higher SNRs, the resolution of the QI levels
off and does not match the prediction anymore. Next,
we evaluated the SNR response for z-tracking (Fig. 5 C).
z-resolution again improves with the SNR for all methods.
The QI algorithm performs best for all SNRs, whereas the
noninterpolating z-algorithm of the COM tracker has a
severely reduced resolution. We extended the resolu-
tion prediction to the z-direction by scaling the predicted
x-resolution with a factor of 7, equal to the relative ex-
pansion of the diffraction pattern in the radial direction
for a given focus displacement. This simple scaling indeed
approximates the behavior of the z-resolution of the QI
tracker (Fig. 5 C, gray line).
Experimental validation

To validate the simulation approach and the performance of
the QI tracker, we performed an experiment that closely
matched the simulations. The z-resolution was mea-
sured for a z-displacement at different SNRs. To create a
z-displacement, the objective was moved in 20 steps of
100 nm, matching the 2 mm total displacement used in the
simulations. Magnetic beads identical to those used to
generate the reference image for the simulations (2.8 mm)
were immobilized on a glass coverslide, and tracking reso-
lution of the different algorithms was evaluated at 75�
magnification as a function of SNR (Fig. S4). The SNR
was set in the range between 3 and 40 by changing the illu-
mination intensity. To remove experimental drift, a single
bead was used as a reference. The tracked position of this
reference bead was subsequently subtracted for each time
point from the positions of the other beads (n¼ 4). The reso-
lution was calculated as the standard deviation of the refer-
ence-subtracted bead positions divided by

ffiffiffi
2

p
, to account

for the noise added by subtracting the reference bead (21).
These experimental results provide a lower limit for the
resolution and closely match the simulation results for the
QI and XCOR algorithms (Fig. 5 C, open symbols). The
experimental resolution of the COM algorithm (Fig. 5 C,
black open symbols) shows markedly worse performance
than the results from the simulations. This can be explained
by the fact that the COM algorithm is very sensitive to
disturbances such as uneven background illumination or
asymmetries in the tracked beads. Both of these effects
are present in the experimental data but not in the simulated,
thereby decreasing the observed experimental tracking reso-
lution. The simple resolution estimate outlined in Section S3
in the Supporting Material (Fig. 5 C, gray line) matches both
the experimental and simulated data within a factor of 2.
The above results show that under near identical conditions,
the z-resolution of the experimental data match closely the
simulation results, validating the evaluation approach based
on simulations.
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The QI algorithm enables highly parallel magnetic
tweezers

To demonstrate the experimental relevance of the proposed
QI algorithm, we performed measurements at 25� magnifi-
cation in multiplexed magnetic tweezers. Targeted DNA
tethering was used to tether a large number of 1-mm para-
magnetic beads to 7.3-kb DNA molecules in a 10 mM
Tris buffer (pH 7.5) (Fig. 6 A) (22). Using this technique
we were able to identify 245 individual beads in the
300 � 400-mm field of view. A measurement procedure
optimized to efficiently handle a large number of the DNA
tethers in a single experimental run was used to obtain
force extension characteristics ((22,23) and I. De Vlaminck,
T. Henighan, M. T. J. van Loenhout, D. R. Burnham, and
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The large errors of the COM and XCOR algorithms show their failure
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length, corresponding to single and double tethered DNA molecules (blue
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C. Dekker, unpublished). The COM, XCOR, and QI algo-
rithms were used in parallel to obtain tracking data during
these measurements and evaluate the performance of each
algorithm. The tracking results for a force-extension mea-
surement of a single DNA tether reveal that only the QI
algorithm is able to accurately track the bead position
throughout this force-extension measurement (Fig. 6 B).
The COM algorithm loses tracking completely for most
data points; whereas the XCOR algorithm manages to track
the bead for most positions but suffers from large discrete
steps in the tracked position, resulting in large errors and
an overestimation of the DNA length.

To evaluate the quality of the data obtained by the
different tracking algorithms, we performed an analysis of
the end-to-end length of 7.3-kb DNA molecules and their
persistence length (Lp), a measure for the length scale
over which orientational fluctuations decay. Out of all the
beads tracked, the QI algorithm yielded 107 DNA tethers
that could be fit by the wormlike chain model (25,26).
Only 51 tethers tracked by XCOR algorithm could be fit
and none of the tethers tracked by the COM algorithm
provided useful data. The results for the obtained Lp and
end-to-end distance of the DNA molecules are shown in
Fig. 6 C. The histogram of Lp for the QI tracker shows
two peaks, one at 48 nm and one at 23 nm, corresponding
to beads tethered by a single DNA molecule and beads teth-
ered by two molecules (27). The measured Lp obtained by
the QI algorithm is in good agreement with previous mea-
surements by which it was determined that Lp z 50 nm
and is modestly dependent on salt in the range of 30 mM
to 150 mM Naþ (25). The histogram for the persistence
length, determined from the data of the XCOR algorithm,
showed a peak at 43 nm, considerably lower than the ex-
pected value of 50 nm.

A histogram of the measured end-to-end distance of the
DNA molecules is shown in Fig. 6 C. The end-to-end dis-
tance at a nominal force of 1.8 pN was obtained by mea-
suring the bead height for 25 s at a nominal force of
1.8 pN. The peak found for the QI algorithm at 2.33 5
0.18 mm is close to the expected length of 2.26 5 0.005
mm (at 1.8 pN, 25-s measurement time). The peak for the
XCOR algorithm was located at a distance of 2.42 5 0.14
mm, longer than the expected end-to-end distance. The
increase in end-to-end distance determined by the XCOR
algorithm can be understood by looking at the tracked
bead positions in Fig. 6 B. The tracking errors made by
the XCOR algorithm lead to an underestimation of the
lowest positions and an overestimation of the largest exten-
sions, resulting in a longer measured end-to-end distance.
DISCUSSION

In this work, we have developed to our knowledge a novel
algorithm for tracking of nondiffraction-limited objects in
3D. We have demonstrated superior performance of this
Biophysical Journal 102(10) 2362–2371
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newly developed QI algorithm compared to the COM
and XCOR algorithms. In particular, the QI algorithm leads
to a reduction of bias and reduced cross talk between x,y-
and z-motions. The properties of the QI algorithm allow it
to function at high precision and at low magnification.
The QI algorithm enables large-scale multiplexed single-
molecule measurements on DNA tethers where other algo-
rithms fail.

The difference in bias performance between the algo-
rithms depends on how they deal with the information loss
due to sampling. The point-spread function of the micro-
scope sets an upper limit for the spatial frequency compo-
nents of the image. For a perfect aberration-free objective
lens, the point-spread function in the focal plane takes the
form of an Airy disk. The Airy disk has a diameter of
da ¼ 1:22 l=NA ¼ 705 nm, where l ¼ 520 nm and NA ¼
0.9 in our setup. Fourier analysis of the Airy pattern shows
that 99% of the information is contained in spatial frequen-
cies >350 nm. Applying the Nyquist criterion to the Airy
pattern gives a minimum required sampling resolution of
350 nm/2 ¼ 175 nm, which corresponds to 42� magnifica-
tion in our setup. This shows that the QI tracking method
makes effective use of all the information in the sampled
image, as bias does not improve for magnifications >50�.
The COM and XCOR algorithms, on the other hand, do
not suppress bias well and require magnifications well
above the Nyquist criterion to reduce bias.

A notable feature for all trackers was the sharp decrease in
resolution at magnifications <20�. This loss of tracking is
also related to the spatial information content of the image.
In this case, however, it is linked to the fringes in the diffrac-
tion pattern, which account for the main information compo-
nent in the image. As the fringe spacing approaches the pixel
size, a severe loss of information occurs, resulting in major
tracking errors. The fringe spacing between the main and
second fringes in the generated images was ~1.3 mm, which
corresponds to a sampling limit at a magnification of 12�,
matching well with the observed loss in resolution for
magnifications <20� (Fig. 3 E).

The resolution in z is considerably lower than the x-reso-
lution, due to the fact that the diffraction pattern only
expands slowly with movements in z. Indeed, the analytical
expression for the achievable resolution (see Section S3 in
the Supporting Material) correctly captures the z-resolution
by simply scaling the predicted x-resolution by a factor
equal to the relative radial expansion of the diffraction
pattern for a given axial displacement of the particle
(Fig. 4 C). To increase z-resolution, it would thus be neces-
sary to make the diffraction pattern more sensitive to
changes in z. This can be achieved by simply increasing
magnification or the numerical aperture of the objective;
moreover, interference-based measurements are able to
greatly increase the sensitivity to z-displacements and have
indeed successfully been applied to increase z-resolution
(18,28).
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The tracking resolution for particles moving in multiple
dimensions can suffer from cross talk. We showed that
z-tracking especially can be significantly affected by cross
talk of in-plane movements (Fig. 4 B), as in-plane tracking
errors will broaden and deform the radial profile. By using
interpolation to create the radial intensity profile, the QI
and XCOR methods suppress pixelation deformations,
resulting in a much improved z-resolution. In experimental
conditions, the effects of cross talk may easily go unnoticed;
tracking fixed beads will not reveal the errors due to cross
talk, but particles undergoing Brownian fluctuations will
exhibit strong cross talk. Simulations are thus essential to
verify the performance of algorithms.

Single-molecule measurements are often not limited by
resolution but are constrained by the number of events
that can be recorded in a single run. Multiplexing of the
measurements is therefore highly desirable, and several
approaches for doing so have been published (21,29). Re-
ducing magnification allows more beads to be imaged and
tracked. It is therefore interesting to compare the tradeoff
between tracking resolution and magnification. The tracking
resolution scales approximately linearly with magnification,
but the number of beads scales as the square of the inverse
resolution. Decreasing the magnification thus provides
a means to track many more beads at a limited loss of reso-
lution. The Nyquist frequency, however, sets a limit to the
minimal magnification that is allowed before a major loss
in resolution occurs. Our results show that at 30� magnifi-
cation, a sub-1-nm resolution for x,y-direction and a sub-
10-nm resolution for the z-direction are possible. These
resolutions, only achieved with the QI tracker, are more
than sufficient for many single-molecule experiments.
Decreasing the magnification to 30� allows 11 times more
beads/area to be tracked compared to a 100�magnification.

Several additional sources of error exist that were not
considered in this work. These include camera errors and
pixel nonlinearity, which have been shown to influence
tracking of single fluorophores (30), as well as mechanical
and acoustical vibrations, or an uneven illumination and
background. Particles may also be nonspherical. The QI
tracking algorithm is, however, robust to such deformations
of the circular geometry if these remain well below the
fringe spacing in the diffraction pattern. With proper care,
it should be possible to reduce these sources of error and
obtain results similar to those of the simulations, as indeed
is shown in our experimental validation.

We have optimized the settings for each algorithm and
believe that the results are representative for the general
performance of each method. The clear performance trends
increase our understanding of the underlying mechanisms.
Many different algorithms and variations are used in the
literature, and results may differ depending on specific para-
meters. Claims in literature about the obtained resolution
should therefore always be treated carefully, as they often
provide an indication of performance only under specific
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conditions, e.g., for static objects, where bias or cross talk
may go unnoticed.

We showed that under many circumstances, the tracking
resolution of nondiffraction-limited particles is limited by
bias and cross talk. Simulations are essential to understand
these effects and provide a means to evaluate and select a
tracking algorithm with superior performance. We have
shown that multiplexed magnetic tweezers using the QI
algorithm were able to provide vastly more data, obtaining
a full histogram of Lp and end-to-end distances in a single
experimental run. Not only did the QI tracker allow us to
obtain data for more than twice the number of DNA tethers
compared to the XCOR algorithm, but, of greater impor-
tance, its superior tracking resolution proved essential for
obtaining correct physical properties for the measured
DNA molecules. We highly recommend the use of the QI
algorithm for tracking nondiffraction-limited spherical
particles, as it operates with very low bias and cross talk
and thereby achieves a higher final resolution in three
dimensions. It is especially useful in conditions that are nor-
mally affected by bias, i.e., when tracking multiple beads at
low magnification or when working at high SNRs.
SUPPORTING MATERIAL

Four sections, including a figure, and references are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(12)00453-5.
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