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Review
Through recent advances in nanotechnology and molec-
ular engineering, biomimetics – the development of
synthetic systems that imitate biological structures
and processes – is now emerging at the nanoscale. In
this review, we explore biomimetic nanopores and nano-
channels. Biological systems are full of nano-scale chan-
nels and pores that inspire us to devise artificial pores
that demonstrate molecular selectivity or other function-
al advantages. Moreover, with a biomimetic approach,
we can also study biological pores, through bottom-up
engineering approaches whereby constituent compo-
nents can be investigated outside the complex cellular
environment.

Biological nanopores
The biological cell is filled with many different types of
pores and channels that control the exchange of ions and
molecules between subcellular compartments. These pas-
sageways are of vital importance to cellular function [1].
Examples include: ion channels at the cell surface that
regulate the flow of ions; pores inserted into cell mem-
branes upon viral infection that serve as conduits for
genome transfer; the nuclear pore complex (NPC) that
controls the transport of mRNA and proteins across the
nuclear envelope of eukaryotic cells; and pores that are
used for protein secretion into cell organelles.

Advances in nanotechnology now make it possible to
study and shape matter at the nanometer scale, opening
the way to imitate biological structures at the molecular
level to both study and harness their ingenuity [2–6].
Indeed, since their first fabrication about a decade ago,
nanometer-sized pores and channels in solid-state materi-
als have served as a scaffold for a variety of biology-
inspired applications (for recent reviews, see [7,8]). A major
direction of these efforts has been to devise molecular
separation methods that exhibit selectivity based on spe-
cific biochemical properties [9]. In other work, wild-type
and genetically modified biological pores have been used
as sensitive biosensors to detect molecules in solution
(see [10] for an overview). Alternatively, biomimetic
approaches have used a bottom-up engineering strategy,
using both biological and synthetic components so that a
complex biological system can be simplified for in vitro
studies that are not otherwise possible. A related approach
– similar but different to biomimetics – is the emerging
field of synthetic biology, which aims to use and develop
biology as an engineering-like science to achieve new
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biological structures and functions [11]. Typically, howev-
er, synthetic biology does not involve artificial (non-biolog-
ical) materials, as do biomimetics.

In this work, we review the field of biomimetic pores and
channels, focusing specifically on two different approaches
(Figure 1) and their applications. First, we highlight engi-
neering efforts inspired by the ingenuity and physical
characteristics of natural biological systems. This entails
both purely synthetic systems that seek to mimic a biologi-
cal counterpart and systems that incorporate biomolecules
or complexes to harness their specificity or function. Sec-
ond, we discuss how biomimetic pores have been employed
to study the mechanistic properties of their biological
counterparts. Although this review focuses on experimen-
tal studies, it should not go unmentioned that theoretical
approaches, such as computational modeling and simula-
tions, have contributed to both our understanding of natu-
ral systems and to design principles for engineering
approaches (for recent reviews see [12,13]).

Biology-inspired engineering
Fabrication of artificial pores and channels

Central to the construction of a biomimetic pore or channel
is the fabrication of an artificial pore or channel that can
serve as a scaffold for further modification. Note that the
naming of pores/channels merely reflects the aspect ratio of
the passageway: where a pore has a diameter larger than
its depth and a channel has a depth much larger than its
diameter. Using various fabrication technologies [7,14–17],
nanopores or channels can be obtained in a variety of
different shapes and structures. For example, nanochan-
nels can be made by straightforward planar lithography
but also by ion-track etching, which allows accurate control
of the pore diameter. In the latter case, a single high-
energy heavy-metal ion from a cyclotron is shot through
a thick polymeric film, followed by chemical wet etching,
which removes damaged material faster than undamaged
material, resulting in a conical nanochannel with a diam-
eter down to 2 nm [18] (Figure 2a,b). Similarly made
membranes, with multiple channels ranging in size from
10 nm to 10 mm and density from 105 to 109 pores/cm2, are
commercially available (Poretics, http://www.sterlitech.
com).

Nanopores can be made using two different approaches.
First, ion beam sculpting [19] has been used to create
single nanopores in thin free-standing silicon nitride
(SiN) membranes. Here, an ion beam is focused at the
membrane to open up a tiny hole with a diameter down to a
few nanometers. Feedback from ion detectors below the
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Figure 1. Engineering efforts can be inspired by the ingenuity and physical

characteristics of natural biological systems. Conversely, biomimetic devices can

be used to study the mechanistic properties of their biological counterparts.
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membrane signals when to turn off the beam. Alternative-
ly, an electron beam from a transmission electron micro-
scope can be used to drill and shape pores down to sub-
nanometer diameters [20] (Figure 2c,d). The latter method
allows direct visual feedback as well as modes to enlarge
(with a locally focused beam) or shrink (with wide-field
illumination) the nanopore in a controlled manner.

Even without any additional modifications, these pores
have proven to be useful as single-molecule biosensors, for
example for the detection of DNA [21–24], RNA [25], pro-
teins [26,27], carbon nanotubes [28], or local protein struc-
tures along DNA [29,30]. However, engineering efforts
inspired by biological systems can enhance the functionality
of bare nanopores. Typically this starts with chemical mod-
ification and coating of bare nanopores that enables their
chemical properties to be tuned [31]. A chemical scheme that
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Figure 2. Fabrication of artificial nanochannels/nanopores. (a) Schematic showing heav
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Transmission electron micrograph of a nanopore with a diameter of 20 nm.
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is often used in the case of polymeric membranes consists of
coating the membrane with a gold layer through electroless
deposition, followed by functionalization via thiol chemistry
[32]. Although this approach is also applicable to silica or
alumina membranes, polymeric membranes may also be
directly reacted with functionalized silanes [33], thereby
reducing the number of chemical treatments needed from
typically two or more to a single one.

Mimicking naturally occurring pores and channels

Several types of biomimetic pores have been developed to
demonstrate selectivity for specific molecular species, as
inspired by naturally occurring pores and channels. Re-
cently a single solid-state nanopore was coated with a fluid
lipid bilayer (Figure 3a) [34]. This approach was inspired
by the olfactory systems of insects, which have lipid-coated
nanochannels in their external skeleton. The lipid coatings
bind and preconcentrate odorant molecules before trans-
porting them to the olfactory neurons in the antennae. The
biomimetic lipid-coated nanopores showed several advan-
tages over bare nanopores, such as: (i) the possibility of fine
tuning the translocation speed of proteins by regulating
the lipid-bilayer viscosity; (ii) the prevention of non-specific
adsorption of proteins to the membrane; and (iii) the
possibility to bind streptavidin-functionalized molecules
selectively to a lipid bilayer that contains biotin groups.

Another artificial system has been designed to mimic
all major components of the receptor-mediated transport
of the nuclear pore complex (Figure 3b) [35]. Here, nano-
porous membrane filters functionalized with polyisopro-
pylacrylamide (pNIPAM) allow faster translocation of a
(d)
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y ions that penetrate a thick polymer membrane. The resulting damaged zones are

els. (b) Scanning electron micrograph of the surface of an alumina membrane with

ission from AAAS. (c) Side-view schematic showing a device consisting of a 20-nm

. A single nanopore is drilled using a highly focused electron beam (yellow). (d)
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Figure 3. Biology-inspired nanopore functionalization. (a) A lipid-coated (yellow) synthetic nanopore in an SiN substrate (grey). Reprinted from [34] with permission from

Macmillan Publishers. (b) Cross-section of a membrane with an array of nanopores grafted with pNIPAM. Reprinted from [35] with permission from the American Chemical

Society. (c) Side-view of a solid-state nanopore functionalized with hairpin-DNA molecules (not drawn to scale). Reprinted from [46] with permission from Macmillan

Publishers. (d) Top view of zinc fingers (green) immobilized into a nanochannel: after Zn2+ binding (pink), the zinc fingers fold to finger-like conformations, yielding an

increase of the effective channel diameter. Adapted from [38].
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single-stranded DNA (ssDNA)–pNIPAM complex com-
pared to that of the smaller ssDNA alone. This is similar
to mediated transport through the NPC, in which a trans-
porter (pNIPAM in this case) ferries a cargo (ssDNA)
through the pore.

Ion channels have also inspired a number of mimics
[36]. These membrane protein complexes facilitate the
transport of ions across membranes, often gated by allo-
steric binding or transmembrane voltage. Many types of
ion channels exist and they are well documented. Atomic-
resolution structures have been determined for ion chan-
nels that are selective for the four most abundant ions in
biology: sodium, potassium, calcium, and chloride [1]. Re-
cently, a biomimetic potassium-responsive nanochannel
has been demonstrated [37]. Here, a nanochannel was
lined with bound G-quadruplex DNA, which, upon addition
of potassium, undergoes a conformational change that
alters the effective channel size. Similarly, a biomimetic
zinc-activated ion channel has been demonstrated by in-
corporating zinc finger peptides into a polymeric nano-
channel [38] (Figure 3d). Artificial proton-reactive
channels with transport properties that depend on the
surrounding proton concentration have also been shown
[39]. They mimic biological proton-gated ion channels by
binding pH-responsive poly(4-vinyl pyridine) brushes onto
solid-state nanopores. Consequently, the channels switch
between an ‘off’ to an ‘on’ state in response to a pH change.
Conical nanopores in polymeric membranes have also
been designed. Their asymmetric shape together with
the negative carboxylate groups that are left over from
the chemical etching lead to ion current rectification, mim-
icking an effect found in voltage-gated ion-channels [40].
Additionally, a nanopore-based photoelectric conversion
system has been inspired by the light-driven cross-mem-
brane proton pump rhodopsin. In this case, photosensitive
molecules are grafted to a nanopore [41].

Realizing selectivity and biosensing

Several approaches are not directly aimed at mimicking
biological pores, but use biomolecules to confer selectivity.
An early study has shown that antibodies attached to the
inner walls of silica nanochannels can select for enantio-
mers [42]. Recently, enantioselective recognition has also
been achieved in a single b-cyclodextrin-modified nano-
channel [43]. Similarly, apoenzymes (enzymes lacking a
required cofactor) bound to a porous membrane select for
transport of its substrate molecule [44]. The same ap-
proach works for cDNA pieces: by attaching short ssDNA
hairpin ‘probes’ to either a membrane with nanochannels
[45] or a single nanopore [46,47], complementary ssDNA
molecules transiently bind, unzip, and work their way
through the pore, whereas mismatched DNA exhibits a
lower translocation probability, attributed to electrostatic
and mechanical friction (Figure 3c). This is a remarkably
sensitive technique: translocation events for short DNA
oligomers (15 bases) with a single base mismatch occur 30
times less frequently than that for perfectly complementa-
ry DNA [46]. Other examples of bio-inspired artificial pores
3
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have successfully demonstrated the separation of proteins
[9,48,49], fluorophores [9,49], and other small molecules
[29,50,51]. In a different approach, functional polymers can
be used as the bases for separation filters. For example,
poly(acrylic acid) is bound to tin (Sn2+) binding sites in
nanochannels of commercial polycarbonate membranes
that are pretreated with a solution of Sn2+ ions [9]. Here,
multiple polymers, dyes, and proteins are separated based
on size, charge, and hydrophobicity.

Biological pores can also be used as sensitive biosensors,
which is an extension of the above approach where biomo-
lecules are used to functionalize a pore or channel. We first
discuss applications using biological pores in their natural
environments, and then continue to discuss how it can be
advantageous to put them in a synthetic environment.

The archetypical protein nanopore for biosensing is a-
hemolysin [52–54], a toxin protein released by the bacteri-
um Staphylococcus aureus that spontaneously inserts
itself into lipid bilayers. It contains a heptameric trans-
membrane channel with a width of about 1.4 nm at its
narrowest constriction, making it just large enough to
allow the passage of ssDNA, but not that of double-strand-
ed DNA (dsDNA). Transport of ssDNA and ssRNA through
a-hemolysin has been extensively studied [for a review, see
[54] and references therein]. Although these biological
pores have the disadvantage of being inserted into rela-
tively fragile free-standing lipid bilayers (no solid-state
support), they can be engineered with molecular biology
techniques, such as mutagenesis [55–58], to make very
specific local changes in their structure that can influence
(a)
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Figure 4. Biological nanopores. (a,b) Structural comparison of a-hemolysin and MspA n

its natural setting. (d) Hybrid nanopore: a-hemolysin inserted into a solid-state nanopo
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transport properties. For example, the internal charge can
be manipulated [57] in such a way that the speed of DNA
translocation can be strongly reduced [58]. The a-hemoly-
sin pore has been used to detect proteins [59], organic
molecules [60], and (enantiomers of) drug molecules [61]
(for an extensive overview see [10]). Other examples of
biological pores that have been used as biosensors include
anthrax spores, which have a structure very similar to a-
hemolysin [62], and the OmpF porin, which interacts with
antibiotics [63]. Recently, a mutant of the MspA porin, with
an inner diameter of �1.2 nm, was used to detect single-
molecule translocation events of ssDNA [64] and even to
distinguish all four DNA nucleotides [65]. One of the main
advantages of the MspA porin over a-hemolysin is that the
inner constriction of MspA is very short in its longitudinal
direction, whereas a-hemolysin has a narrow barrel that is
relatively long (Figure 4a,b). As a result, MspA has a
higher specificity for individual bases, and is therefore
potentially more suitable for DNA sequencing, similar to
the advantage of using atomically thin graphene nano-
pores [66–68] versus thicker SiN nanopores. Another bio-
logical pore that has been used for bioengineering is the
mechanosensitive MscL channel of Escherichia coli, which
has been chemically modified into a light-activated nano-
valve and utilized for triggered delivery in synthetic lipo-
somal vesicles [69,70]. For a comprehensive review of
applications of biological pores in nanomedicine, sensing,
and nanoelectronics see [71].

Recently, hybrid biological/artificial pores have been
demonstrated. The biological ion channel gramacidin-A
(b)
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has been confined into a nanopore channel [72]. Also,
individual a-hemolysin proteins have been inserted into
a narrow solid-state nanopore, combining the two most
experimentally studied nanopores [73]. Hybrid approaches
have the great advantage of combining a biological, atom-
ically precise, structure that can be genetically engineered
with the robustness, sustainability and potential for par-
allelization and device-integration of solid-state nanopores
(Figure 4c,d). Given the promising sequencing character-
istics of both MspA [65], and a-hemolysin [74], a hybrid
approach may turn out to be useful for genomic sequencing
devices.

Mechanistic investigation of biological pores
Complementary to bio-inspired engineering, one can take
advantage of the recent technological advances in nanoen-
gineering to construct biomimetic pores for the purpose of
studying the biological principles of their natural counter-
parts. Nature is highly organized in a hierarchical manner
from the molecular to the macroscopic scale, starting with
nano-architectures that together form a multitude of dif-
ferent macromolecular assemblies and interactions. Bot-
tom-up engineering approaches, where complex biological
systems are simplified to their constituent components,
have been used to study the NPC at the fundamental level
both in bulk [75] and single-molecule [76] investigations.

Bulk investigations of a biomimetic NPC

NPCs (Figure 5a) are the sole connection between the
nucleus and the cytosol of eukaryotic cells, thus playing
a key role in connecting the genetic material and the
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by monitoring the trans-pore current [76]. (e,f) Single-molecule translocation events. Io

Each spike is a single-molecule event. Event amplitudes are similar, whereas the dwell t

bare and Nup-modified pores, showing NPC-like selectivity [76].
protein-synthesizing apparatus [77]. This remarkable cel-
lular machine forms a pore with an �40-nm inner diameter
and controls all transport of proteins and RNA across the
nuclear envelope. The NPC acts as a selective sieve: al-
though permeable to ions and small solutes (up to �40
kDa), transport through this gate is otherwise reserved for
transport receptors (karyopherins) that ferry cargo across
the complex. Vertebrate NPCs have a total mass of �120
MDa and are composed of about 30 distinct types of pro-
teins (nucleoporins) [78]. About one-third of these nucleo-
porins contain natively unfolded domains rich in
phenylalanine–glycine repeat motifs (FG-domains) [79],
which are believed to be crucial for selective transport of
receptor–cargo complexes across the NPC channel [80].

By tethering FG-nucleoporins to commercial polycar-
bonate filters, NPC-like transport selectivity has been
reconstituted in an artificial system (Figure 5b) [75]. Using
track-etched polycarbonate membranes with cylindrical
nanopores of 30 nm in diameter and 6 mm in length, a thin
layer of gold was sputtered onto one side of the membrane.
Next, thiol-modified yeast nucleoporins, Nsp1, were at-
tached to the gold layer. The functionalized membranes
were then mounted between two fluid chambers and the
flux of fluorescently labeled karyopherin proteins through
the pores was measured using confocal microscopy. Trans-
port-receptor-bound cargo molecules translocated much
faster (3–5 times) than molecules of similar size that did
not bind FG-domains. The degree of selectivity was found
to depend on the pore diameter and on the binding strength
between nucleoporins and transport receptors. Interest-
ingly, a single nuclear pore protein (Nup) is sufficient for
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d with permission from http://newswire.rockefeller.edu/?page=engine&id=870. (b)
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selectivity: when comparing the flux of bovine serum albu-
min (BSA; an inert protein) and nuclear transport factor 2
(NTF2; a transport receptor) through the functionalized
membrane, the authors found that the transport receptors
translocated (at best) five times more efficiently than the
inert protein. Evidently, such a biomimetic NPC system
might also be used for application in separation and bioa-
nalytical devices. Although such an application would
likely benefit from the parallelization derived from the
large array of nanopores present in this experimental
platform, such an array limits measurements of transloca-
tion properties to bulk, ensemble-averaged, behavior.
Further investigation into the translocation properties of
a single molecule requires the ability to measure translo-
cation on an individual biomimetic NPC.

Single-molecule investigations of a biomimetic NPC

Recently, this approach has been realized wherein solid-
state nanopores have been used for single-molecule trans-
port studies on an individual biomimetic NPC [76]
(Figure 5c). First, a nanopore was drilled into a 20-nm
thin membrane with a focused transmission electron mi-
croscope beam and human nucleoporins (Nup98 or
Nup153) were covalently tethered to it using maleimide
chemistry. The membrane was then placed in a microflui-
dic flow cell where the nanopore formed the only connection
between two fluidic compartments. Individual transloca-
tion events were monitored using sensitive ionic current
measurements with sub-millisecond temporal resolution.
The nucleoporins formed a very dense, low-conductivity
network with pores up to �25 nm in diameter, whereas
larger pores formed a more open structure. Transport
receptors (Impb) proceeded with a dwell time of a few
milliseconds, whereas the passage of nonspecific proteins
(BSA) was strongly inhibited with selectivity factors of up
to 60 (meaning that the average number of translocation
events per second was 60-fold higher for Impb than for
BSA), with differing degrees of selectivity depending on the
nucleoporin type. Also, one type of FG-nucleoporin was
sufficient to form a selective permeability barrier. By
reproducing key features of the NPC, this biomimetic
approach provides a quantitative platform to study nucleo-
cytoplasmic transport phenomena at the single-molecule
level in vitro.

The transport through the NPC poses many interesting
questions. How does the pore generate a diffusion barrier?
How is this influenced by the composition of the nucleo-
porins, the sequence of their FG-repeats, and the number
of repeats? Do the nucleoporin chains interact with one
another? Do they interpenetrate to form a gel? Do they
form a molecular brush? How exactly do receptors move
through the pore? Do they change the local structure of the
nucleoporin network? Do they bind to an individual Nup
and are subsequently ferried through the NPC, or do they
jump from one Nup to the next? Some of these questions
may well be addressed using the biomimetic approach,
which offers a new type of testing platform for mechanistic
studies. Similar measurements on biomimetic NPCs
may not only shed light on the fundamental workings of
this important protein machine, but also provide new
opportunities for, studying gene and drug delivery into
6

the nucleus. Theoretical studies and molecular dynamics
simulations may also shed light on these questions (for
some very recent progress in these directions, see [81–84]).

Perspective
Biomimetic techniques can give insights into key molecu-
lar processes occurring in biology. Although there are
multiple challenges that face biomimetics of pores, it has
already proven a fruitful approach. The main challenge in
biological systems is their complexity, therefore, complete
assembly in vitro seems out of reach. Furthermore, for
many systems, a lack of structural data limits our knowl-
edge of the biological system and hence makes it challeng-
ing to mimic it accurately. Finally, even though technology
has rapidly advanced, there are still obvious fabrication as
well as surface chemistry limitations.

In this review we have given various examples of biomi-
metic systems, with an emphasis on nanopores. The field of
biomimetics is of course still broader. For example, there has
been much interest recently [85] in biomimetic artificial
photosynthesis [86]. Earlier this year, an artificial leaf
was reported that is 10 times more efficient than the real
counterpart (http://www.technologyreview.com/energy/
37310/).

The emergence of techniques to investigate transport
through pores and channels in new ways can open up new
avenues for research. For example, a new instrument that
combines total internal reflection fluorescence microscopy
with ionic current measurements has demonstrated syn-
chronous optical and electrical detection of biomolecules
traversing solid-state nanopores [87]. A similar instrument
could be used for biomimetic nanopores to image diffusion
of transport factors in nucleoporin-coated nanochannels.
Alternatively, an integrated nanopore-optical tweezer set-
up [88] would allow measurement of the force on transport
factors during the translocation process. These types of
experiments may yield new information about the forces
governing the translocation process, and accordingly shed
new light on the mechanism of translocation.

An important question in the field of nucleocytoplasmic
transport is which route the transporters take through the
NPC. Despite a recent step toward monitoring interactions
between nucleoporins and transporters using subdiffraction
microscopy, the complete puzzle is yet unsolved because of
instrumental limitations [89]. A comprehensive analysis of
the biophysical properties of yeast FG-Nups has found that
Nups organize as extended random coils and molten glo-
bules described as ‘trees’ and ‘shrubs’, depending upon
whether the Nups are strongly charged or relatively un-
charged [90]. Perhaps by tethering FG-Nups to nanopat-
terned slits, one could study through which pathway (i.e.
tree or shrub) the transporter molecules diffuse through this
‘forest’. Such measurements would require nanometer-ac-
curacy tracking, which appears to be possible using state-of-
the-art single-molecule fluorescence methods.

New technological abilities to study and shape matter at
the nanoscale have enabled the development and explora-
tion of various types of biomimetic nanopores. Such pores
can be used in an array of applications in biotechnology,
notably as biosensors and separation filters. By constructing
artificial systems that resemble biological pores from the

http://www.technologyreview.com/energy/37310/
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Review Trends in Biotechnology xxx xxxx, Vol. xxx, No. x

TIBTEC-929; No. of Pages 8
bottom up, the biomimetic approach has also yielded new
knowledge about biological pores, in particular, the NPC.
Biomimetic nanopores form an exciting emerging research
field with ample opportunities for new applications and
discoveries.
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